1、带着BAT大厂的面试问题去理解
请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。
- 什么是AQS? 为什么它是核心? 管理共享资源和请求资源的线程
- AQS的核心思想是什么? 它是怎么实现的? 底层数据结构等 CLH(虚拟的双向队列)
- AQS有哪些核心的方法?
- AQS定义什么样的资源获取方式? AQS定义了两种资源获取方式:
独占
(只有一个线程能访问执行,又根据是否按队列的顺序分为公平锁
和非公平锁
,如ReentrantLock
) 和共享
(多个线程可同时访问执行,如Semaphore
、CountDownLatch
、CyclicBarrier
)。ReentrantReadWriteLock
可以看成是组合式,允许多个线程同时对某一资源进行读。 - AQS底层使用了什么样的设计模式? 模板设计模式
- AQS的应用示例?
2、AbstractQueuedSynchronizer简介
AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue,FutureTask等等,皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。
2.1、AQS 核心思想
AQS核心思想是:如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列 (虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。
AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。AQS使用CAS对该同步状态进行原子操作实现对其值的修改。
//共享变量,使用volatile修饰保证线程可见性 private volatile int state;
状态信息通过protected类型的 getState,setState,compareAndSetState 进行操作
// 返回同步状态的当前值 protected final int getState() { return state; } // 设置同步状态的值 protected final void setState(int newState) { state = newState; } // 原子地(CAS操作)将同步状态值设置为给定值update 如果当前同步状态的值等于expect(期望值) protected final boolean compareAndSetState(int expect, int update) { return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
2.2、AQS 对资源的共享方式
AQS定义两种资源共享方式
- Exclusive(独占):只有一个线程能执行,如ReentrantLock。又可分为公平锁和非公平锁:
- 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
- 非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的 (默认)
- ReentrantLock见这篇文章:JUC第十三讲:JUC锁: ReentrantLock详解
- Share(共享):多个线程可同时执行,如Semaphore/CountDownLatch。Semaphore、CountDownLatch、 CyclicBarrier、ReadWriteLock 。
- JUC第十四讲:JUC锁: ReentrantReadWriteLock详解
- JUC第二十六讲:JUC工具类: CountDownLatch详解
- JUC第二十七讲:JUC工具类: CyclicBarrier详解
- JUC第二十八讲:JUC工具类: Semaphore详解
ReentrantReadWriteLock 可以看成是组合式,因为ReentrantReadWriteLock也就是读写锁允许多个线程同时对某一资源进行读。
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护 (如获取资源失败入队 / 唤醒出队等),AQS已经在上层已经帮我们实现好了。
2.3、AQS底层使用了模板方法模式
同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样 (模板方法模式很经典的一个应用):
使用者继承 AbstractQueuedSynchronizer 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放) 将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
这和我们以往通过实现接口的方式有很大区别,模板方法模式请参看:JAVA设计模式第四讲:行为型设计模式 第二节
AQS使用了模板方法模式,自定义同步器时需要重写下面几个AQS提供的模板方法:
// 模版方法1: 释放资源 public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; } ... // 拓展点 isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。 tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。 tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。 tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。 tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。
默认情况下,每个方法都抛出 UnsupportedOperationException。这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS类中的其他方法都是final,所以无法被其他类使用,只有这几个方法可以被其他类使用。
以 ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock() 到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。
3、AbstractQueuedSynchronizer数据结构
AbstractQueuedSynchronizer类底层的数据结构是使用CLH(Craig,Landin,and Hagersten)队列
是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。其中Sync queue,即同步队列,是双向链表,包括head结点和tail结点,head结点主要用作后续的调度。而Condition queue不是必须的,其是一个单向链表,只有当使用Condition时,才会存在此单向链表。并且可能会有多个Condition queue。
4、AbstractQueuedSynchronizer源码分析
4.1、类的继承关系
AbstractQueuedSynchronizer 继承自 AbstractOwnableSynchronizer 抽象类,并且实现了Serializable接口,可以进行序列化。
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable
其中 AbstractOwnableSynchronizer 抽象类的源码如下:
public abstract class AbstractOwnableSynchronizer implements java.io.Serializable { // 版本序列号 private static final long serialVersionUID = 3737899427754241961L; // 构造方法 protected AbstractOwnableSynchronizer() { } // 独占模式下的线程 (ReentrantLock) private transient Thread exclusiveOwnerThread; // 设置独占线程 protected final void setExclusiveOwnerThread(Thread thread) { exclusiveOwnerThread = thread; } // 获取独占线程 protected final Thread getExclusiveOwnerThread() { return exclusiveOwnerThread; } }
AbstractOwnableSynchronizer 抽象类中,可以设置独占资源线程和获取独占资源线程。分别为setExclusiveOwnerThread与getExclusiveOwnerThread方法,这两个方法会被子类调用。
AbstractQueuedSynchronizer类有两个内部类,分别为Node类与ConditionObject类。下面分别做介绍。
4.2、AbstractQueuedSynchronizer的内部类 - Node类
static final class Node { // 模式,分为共享与独占 // 共享模式 (CountdownLatch,ReadWriteLock) static final Node SHARED = new Node(); // 独占模式 (ReentrantLock) static final Node EXCLUSIVE = null; // 结点状态 // CANCELLED,值为1,表示当前的线程被取消 // SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark (唤醒后继结点线程) // CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中 (条件队列) // PROPAGATE,值为-3,表示当前场景下后续的 acquireShared 能够得以执行 (获取资源) // 值为0,表示当前节点在sync队列中,等待着获取锁 static final int CANCELLED = 1; static final int SIGNAL = -1; static final int CONDITION = -2; static final int PROPAGATE = -3; // 结点状态 volatile int waitStatus; // 前驱结点 volatile Node prev; // 后继结点 volatile Node next; // 结点所对应的线程 volatile Thread thread; // 下一个等待者 Node nextWaiter; // 结点是否在共享模式下等待 final boolean isShared() { return nextWaiter == SHARED; } // 获取前驱结点,若前驱结点为空,抛出异常 final Node predecessor() { // 保存前驱结点 Node p = prev; // 前驱结点为空,抛出异常 if (p == null) throw new NullPointerException(); else // 前驱结点不为空,返回 return p; } // 无参构造方法 // Used to establish initial head or SHARED marker Node() { } // 构造方法 Node(Thread thread, Node mode) { // Used by addWaiter this.nextWaiter = mode; this.thread = thread; } // 构造方法 Node(Thread thread, int waitStatus) { // Used by Condition this.waitStatus = waitStatus; this.thread = thread; } }
每个线程被阻塞的线程都会被封装成一个Node结点,放入队列。每个节点包含了一个Thread类型的引用,并且每个节点都存在一个状态,具体状态如下。
CANCELLED
,值为1,表示当前的线程被取消;SIGNAL
,值为-1,表示当前节点的后继节点包含的线程需要运行,需要进行unpark操作;CONDITION
,值为-2,表示当前节点在等待 condition,也就是在 condition queue 中;PROPAGATE
,值为-3,表示当前场景下后续的acquireShared能够得以执行;- 值为0,表示当前节点在sync queue中,等待着获取锁。
4.3、AbstractQueuedSynchronizer的内部类 - ConditionObject类
这个类有点长,耐心看下:
// 内部类 public class ConditionObject implements Condition, java.io.Serializable { // 版本号 private static final long serialVersionUID = 1173984872572414699L; /** First node of condition queue. */ // condition 队列的头节点 private transient Node firstWaiter; /** Last node of condition queue. */ // condition队列的尾结点 private transient Node lastWaiter; /** * Creates a new {@code ConditionObject} instance. */ // 构造方法 public ConditionObject() { } // Internal methods /** * Adds a new waiter to wait queue. * @return its new wait node */ // 添加新的waiter到wait队列 private Node addConditionWaiter() { // 保存尾结点 Node t = lastWaiter; // If lastWaiter is cancelled, clean out. // 尾结点不为空,并且尾结点的状态不为CONDITION if (t != null && t.waitStatus != Node.CONDITION) { // 清除状态为CONDITION的结点 unlinkCancelledWaiters(); // 将最后一个结点重新赋值给 t t = lastWaiter; } // 新建一个结点 Node node = new Node(Thread.currentThread(), Node.CONDITION); // 尾结点为空 if (t == null) // 设置condition队列的头节点 firstWaiter = node; else // 尾结点不为空 // 设置为节点的nextWaiter域为node结点 t.nextWaiter = node; // 更新condition队列的尾结点 lastWaiter = node; return node; } /** * Removes and transfers nodes until hit non-cancelled one or * null. Split out from signal in part to encourage compilers * to inline the case of no waiters. * @param first (non-null) the first node on condition queue */ private void doSignal(Node first) { // 循环 do { // 该节点的nextWaiter为空 if ( (firstWaiter = first.nextWaiter) == null) // 设置尾结点为空 lastWaiter = null; // 设置first结点的nextWaiter域 first.nextWaiter = null; } while (!transferForSignal(first) && (first = firstWaiter) != null); // 将结点从condition队列转移到sync队列失败并且condition队列中的头节点不为空,一直循环 } /** * Removes and transfers all nodes. * @param first (non-null) the first node on condition queue */ private void doSignalAll(Node first) { // condition队列的头节点尾结点都设置为空 lastWaiter = firstWaiter = null; // 循环 do { // 获取first结点的nextWaiter域结点 Node next = first.nextWaiter; // 设置first结点的nextWaiter域为空 first.nextWaiter = null; // 将first结点从condition队列转移到sync队列 transferForSignal(first); // 重新设置first first = next; } while (first != null); } /** * Unlinks cancelled waiter nodes from condition queue. * Called only while holding lock. This is called when * cancellation occurred during condition wait, and upon * insertion of a new waiter when lastWaiter is seen to have * been cancelled. This method is needed to avoid garbage * retention in the absence of signals. So even though it may * require a full traversal, it comes into play only when * timeouts or cancellations occur in the absence of * signals. It traverses all nodes rather than stopping at a * particular target to unlink all pointers to garbage nodes * without requiring many re-traversals during cancellation * storms. */ // 从 condition 队列中清除状态为CANCEL的结点 private void unlinkCancelledWaiters() { // 保存condition队列头节点 Node t = firstWaiter; Node trail = null; while (t != null) { // t不为空 // 下一个结点 Node next = t.nextWaiter; if (t.waitStatus != Node.CONDITION) { // t结点的状态不为CONDTION状态 // 设置t节点的nextWaiter域为空 t.nextWaiter = null; if (trail == null) // trail为空 // 重新设置condition队列的头节点 firstWaiter = next; else // trail不为空 // 设置trail结点的nextWaiter域为next结点 trail.nextWaiter = next; if (next == null) // next结点为空 // 设置condition队列的尾结点 lastWaiter = trail; } else // t结点的状态为CONDTION状态 // 设置trail结点 trail = t; // 设置t结点 t = next; } } // public methods /** * Moves the longest-waiting thread, if one exists, from the * wait queue for this condition to the wait queue for the * owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。 public final void signal() { if (!isHeldExclusively()) // 不被当前线程独占,抛出异常 throw new IllegalMonitorStateException(); // 保存condition队列头节点 Node first = firstWaiter; if (first != null) // 头节点不为空 // 唤醒一个等待线程 doSignal(first); } /** * Moves all threads from the wait queue for this condition to * the wait queue for the owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。 public final void signalAll() { if (!isHeldExclusively()) // 不被当前线程独占,抛出异常 throw new IllegalMonitorStateException(); // 保存condition队列头节点 Node first = firstWaiter; if (first != null) // 头节点不为空 // 唤醒所有等待线程 doSignalAll(first); } /** * Implements uninterruptible condition wait. * <ol> * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * </ol> */ // 等待,当前线程在接到信号之前一直处于等待状态,不响应中断 public final void awaitUninterruptibly() { // 添加一个结点到等待队列 Node node = addConditionWaiter(); // 获取释放的状态 int savedState = fullyRelease(node); boolean interrupted = false; while (!isOnSyncQueue(node)) { // // 阻塞当前线程 LockSupport.park(this); if (Thread.interrupted()) // 当前线程被中断 // 设置interrupted状态 interrupted = true; } if (acquireQueued(node, savedState) || interrupted) // selfInterrupt(); } /* * For interruptible waits, we need to track whether to throw * InterruptedException, if interrupted while blocked on * condition, versus reinterrupt current thread, if * interrupted while blocked waiting to re-acquire. */ /** Mode meaning to reinterrupt on exit from wait */ private static final int REINTERRUPT = 1; /** Mode meaning to throw InterruptedException on exit from wait */ private static final int THROW_IE = -1; /** * Checks for interrupt, returning THROW_IE if interrupted * before signalled, REINTERRUPT if after signalled, or * 0 if not interrupted. */ private int checkInterruptWhileWaiting(Node node) { return Thread.interrupted() ? (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0; } /** * Throws InterruptedException, reinterrupts current thread, or * does nothing, depending on mode. */ private void reportInterruptAfterWait(int interruptMode) throws InterruptedException { if (interruptMode == THROW_IE) throw new InterruptedException(); else if (interruptMode == REINTERRUPT) selfInterrupt(); } /** * Implements interruptible condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled or interrupted. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */ // 等待,当前线程在接到信号或被中断之前一直处于等待状态 public final void await() throws InterruptedException { if (Thread.interrupted()) // 当前线程被中断,抛出异常 throw new InterruptedException(); // 在wait队列上添加一个结点 Node node = addConditionWaiter(); // int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 阻塞当前线程 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 检查结点等待时的中断类型 break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); } /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */ // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态 public final long awaitNanos(long nanosTimeout) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); final long deadline = System.nanoTime() + nanosTimeout; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (nanosTimeout <= 0L) { transferAfterCancelledWait(node); break; } if (nanosTimeout >= spinForTimeoutThreshold) LockSupport.parkNanos(this, nanosTimeout); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; nanosTimeout = deadline - System.nanoTime(); } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return deadline - System.nanoTime(); } /** * Implements absolute timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */ // 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态 public final boolean awaitUntil(Date deadline) throws InterruptedException { long abstime = deadline.getTime(); if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); boolean timedout = false; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (System.currentTimeMillis() > abstime) { timedout = transferAfterCancelledWait(node); break; } LockSupport.parkUntil(this, abstime); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return !timedout; } /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */ // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0 public final boolean await(long time, TimeUnit unit) throws InterruptedException { long nanosTimeout = unit.toNanos(time); if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); final long deadline = System.nanoTime() + nanosTimeout; boolean timedout = false; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (nanosTimeout <= 0L) { timedout = transferAfterCancelledWait(node); break; } if (nanosTimeout >= spinForTimeoutThreshold) LockSupport.parkNanos(this, nanosTimeout); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; nanosTimeout = deadline - System.nanoTime(); } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return !timedout; } // support for instrumentation /** * Returns true if this condition was created by the given * synchronization object. * * @return {@code true} if owned */ final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { return sync == AbstractQueuedSynchronizer.this; } /** * Queries whether any threads are waiting on this condition. * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. * * @return {@code true} if there are any waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 查询是否有正在等待此条件的任何线程 protected final boolean hasWaiters() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) return true; } return false; } /** * Returns an estimate of the number of threads waiting on * this condition. * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. * * @return the estimated number of waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 返回正在等待此条件的线程数估计值 protected final int getWaitQueueLength() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int n = 0; for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) ++n; } return n; } /** * Returns a collection containing those threads that may be * waiting on this Condition. * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}. * * @return the collection of threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 返回包含那些可能正在等待此条件的线程集合 protected final Collection<Thread> getWaitingThreads() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); ArrayList<Thread> list = new ArrayList<Thread>(); for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) { Thread t = w.thread; if (t != null) list.add(t); } } return list; } }
此类实现了Condition接口,Condition接口定义了条件操作规范,具体如下
public interface Condition { // 等待,当前线程在接到信号或被中断之前一直处于等待状态 void await() throws InterruptedException; // 等待,当前线程在接到信号之前一直处于等待状态,不响应中断 void awaitUninterruptibly(); // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态 long awaitNanos(long nanosTimeout) throws InterruptedException; // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0 boolean await(long time, TimeUnit unit) throws InterruptedException; // 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态 boolean awaitUntil(Date deadline) throws InterruptedException; // 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。 void signal(); // 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。 void signalAll(); }
Condition接口中定义了await、signal方法,用来等待条件、释放条件。之后会详细分析CondtionObject的源码。
4.4、AbstractQueuedSynchronizer的属性
属性中包含了头节点head,尾结点tail,状态state、自旋时间spinForTimeoutThreshold,还有AbstractQueuedSynchronizer抽象的属性在内存中的偏移地址,通过该偏移地址,可以获取和设置该属性的值,同时还包括一个静态初始化块,用于加载内存偏移地址。
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { // 版本号 private static final long serialVersionUID = 7373984972572414691L; // 头节点 private transient volatile Node head; // 尾结点 private transient volatile Node tail; // 状态 private volatile int state; // 自旋时间 static final long spinForTimeoutThreshold = 1000L; // Unsafe类实例 private static final Unsafe unsafe = Unsafe.getUnsafe(); // state内存偏移地址 private static final long stateOffset; // head内存偏移地址 private static final long headOffset; // state内存偏移地址 private static final long tailOffset; // tail内存偏移地址 private static final long waitStatusOffset; // next内存偏移地址 private static final long nextOffset; // 静态初始化块 static { try { stateOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("state")); headOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("head")); tailOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("tail")); waitStatusOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("waitStatus")); nextOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("next")); } catch (Exception ex) { throw new Error(ex); } } }
unsafe类可以参考这篇文章:来自美团技术团队:Java魔法类:Unsafe应用解析
4.5、类的构造方法
此类构造方法为从抽象构造方法,供子类调用。
protected AbstractQueuedSynchronizer() { }
4.6、类的核心方法 - acquire方法
该方法以独占模式获取(资源),忽略中断,即线程在aquire过程中,中断此线程是无效的。源码如下:
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
由上述源码可以知道,当一个线程调用acquire时,调用方法流程如下
- 首先调用tryAcquire方法,调用此方法的线程会试图在独占模式下获取对象状态。此方法应该查询是否允许它在独占模式下获取对象状态,如果允许,则获取它。在AbstractQueuedSynchronizer 源码中默认会抛出一个异常,即需要子类去重写此方法完成自己的逻辑。之后会进行分析。
- 若tryAcquire失败,则调用addWaiter方法,addWaiter方法完成的功能是将调用此方法的线程封装成为一个结点并放入Sync queue。
- 调用acquireQueued方法,此方法完成的功能是Sync queue中的结点不断尝试获取资源,若成功,则返回true,否则,返回false。
- 由于tryAcquire默认实现是抛出异常,所以此时,不进行分析,之后会结合一个例子进行分析。
首先分析addWaiter方法
// 添加等待者 private Node addWaiter(Node mode) { // 新生成一个结点,默认为独占模式 Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure // 保存尾结点 Node pred = tail; // 尾结点不为空,即已经被初始化 if (pred != null) { // 将node结点的prev域连接到尾结点 node.prev = pred; // 比较pred是否为尾结点,是则将尾结点设置为node if (compareAndSetTail(pred, node)) { // 设置尾结点的next域为node pred.next = node; return node; // 返回新生成的结点 } } // 尾结点为空(即还没有被初始化过),或者是compareAndSetTail操作失败,则入队列 enq(node); return node; }
addWaiter方法使用快速添加的方式往sync queue尾部添加结点,如果sync queue队列还没有初始化,则会使用enq插入队列中。enq方法源码如下
private Node enq(final Node node) { for (;;) { // 无限循环,确保结点能够成功入队列 // 保存尾结点 Node t = tail; if (t == null) { // 尾结点为空,即还没被初始化 if (compareAndSetHead(new Node())) // 头节点为空,并设置头节点为新生成的结点 tail = head; // 头节点与尾结点都指向同一个新生结点 } else { // 尾结点不为空,即已经被初始化过 // 将node结点的prev域连接到尾结点 node.prev = t; // 比较结点t是否为尾结点,若是则将尾结点设置为node if (compareAndSetTail(t, node)) { // 设置尾结点的next域为node t.next = node; return t; // 返回尾结点 } } } }
enq方法会使用无限循环来确保节点的成功插入。
现在,分析acquireQueue方法。其源码如下
// sync队列中的结点在独占且忽略中断的模式下获取(资源) final boolean acquireQueued(final Node node, int arg) { // 标志 boolean failed = true; try { // 中断标志 boolean interrupted = false; for (;;) { // 无限循环 // 获取node节点的前驱结点 final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { // 前驱为头节点并且成功获得锁 setHead(node); // 设置头节点 p.next = null; // help GC failed = false; // 设置标志 return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
首先获取当前节点的前驱节点,如果前驱节点是头节点并且能够获取(资源),代表该当前节点能够占有锁,设置头节点为当前节点,返回。否则,调用 shouldParkAfterFailedAcquire 和 parkAndCheckInterrupt 方法,首先,我们看 shouldParkAfterFailedAcquire 方法,代码如下
// 当获取(资源)失败后,检查并且更新结点状态 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { // 获取前驱结点的状态 int ws = pred.waitStatus; if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1 /* * This node has already set status asking a release * to signal it, so it can safely park. */ // 可以进行park操作 return true; if (ws > 0) { // 表示状态为CANCELLED,为1 /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点 // 赋值pred结点的next域 pred.next = node; } else { // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中) /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ // 比较并设置前驱结点的状态为SIGNAL compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } // 不能进行park操作 return false; }
只有当该节点的前驱结点的状态为SIGNAL时,才可以对该结点所封装的线程进行park操作。否则,将不能进行park操作。再看parkAndCheckInterrupt方法,源码如下
// 进行park操作并且返回该线程是否被中断 private final boolean parkAndCheckInterrupt() { // 在许可可用之前禁用当前线程,并且设置了blocker LockSupport.park(this); return Thread.interrupted(); // 当前线程是否已被中断,并清除中断标记位 }
parkAndCheckInterrupt方法里的逻辑是首先执行park操作,即禁用当前线程,然后返回该线程是否已经被中断。再看final块中的cancelAcquire方法,其源码如下
// 取消继续获取(资源) private void cancelAcquire(Node node) { // Ignore if node doesn't exist // node为空,返回 if (node == null) return; // 设置node结点的thread为空 node.thread = null; // Skip cancelled predecessors // 保存node的前驱结点 Node pred = node.prev; while (pred.waitStatus > 0) // 找到node前驱结点中第一个状态小于0的结点,即不为CANCELLED状态的结点 node.prev = pred = pred.prev; // predNext is the apparent node to unsplice. CASes below will // fail if not, in which case, we lost race vs another cancel // or signal, so no further action is necessary. // 获取pred结点的下一个结点 Node predNext = pred.next; // Can use unconditional write instead of CAS here. // After this atomic step, other Nodes can skip past us. // Before, we are free of interference from other threads. // 设置node结点的状态为CANCELLED node.waitStatus = Node.CANCELLED; // If we are the tail, remove ourselves. if (node == tail && compareAndSetTail(node, pred)) { // node结点为尾结点,则设置尾结点为pred结点 // 比较并设置pred结点的next节点为null compareAndSetNext(pred, predNext, null); } else { // node结点不为尾结点,或者比较设置不成功 // If successor needs signal, try to set pred's next-link // so it will get one. Otherwise wake it up to propagate. int ws; if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { // (pred结点不为头节点,并且pred结点的状态为SIGNAL)或者 // pred结点状态小于等于0,并且比较并设置等待状态为SIGNAL成功,并且pred结点所封装的线程不为空 // 保存结点的后继 Node next = node.next; // 后继不为空并且后继的状态小于等于0 if (next != null && next.waitStatus <= 0) // 比较并设置pred.next = next; compareAndSetNext(pred, predNext, next); } else { unparkSuccessor(node); // 释放node的前一个结点 } node.next = node; // help GC } }
该方法完成的功能就是取消当前线程对资源的获取,即设置该结点的状态为CANCELLED,接着我们再看unparkSuccessor方法,源码如下
// 释放后继结点 private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ // 获取node结点的等待状态 int ws = node.waitStatus; // 状态值小于0,为SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3 if (ws < 0) // 比较并且设置结点等待状态,设置为0 compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ // 获取node节点的下一个结点 Node s = node.next; // 下一个结点为空或者下一个节点的等待状态大于0,即为CANCELLED if (s == null || s.waitStatus > 0) { // s赋值为空 s = null; // 从尾结点开始从后往前开始遍历 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) // 找到等待状态小于等于0的结点,找到最前的状态小于等于0的结点 // 保存结点 s = t; } // 该结点不为为空,释放许可 if (s != null) LockSupport.unpark(s.thread); }
该方法的作用就是为了释放node节点的后继结点。
对于cancelAcquire与unparkSuccessor方法,如下示意图可以清晰的表示:
其中node为参数,在执行完 cancelAcquire 方法后的效果就是unpark了s结点所包含的t4线程。
现在,再来看acquireQueued方法的整个的逻辑。逻辑如下:
- 判断结点的前驱是否为head并且是否成功获取(资源);
- 若步骤1均满足,则设置结点为head,之后会判断是否finally模块,然后返回;
- 若步骤2不满足,则判断是否需要park当前线程,是否需要park当前线程的逻辑是:判断结点的前驱结点的状态是否为SIGNAL,若是,则park当前结点,否则,不进行park操作;
- 若park了当前线程,之后某个线程对本线程unpark后,并且本线程也获得机会运行。那么,将会继续进行步骤①的判断。
4.7、类的核心方法 - release方法
以独占模式释放对象,其源码如下:
public final boolean release(int arg) { // 释放成功 if (tryRelease(arg)) { // 保存头节点 Node h = head; // 头节点不为空并且头节点状态不为0 if (h != null && h.waitStatus != 0) //释放头节点的后继结点 unparkSuccessor(h); return true; } return false; }
其中,tryRelease的默认实现是抛出异常,需要具体的子类实现,如果tryRelease成功,那么如果头节点不为空并且头节点的状态不为0,则释放头节点的后继结点,unparkSuccessor 方法已经分析过,不再累赘。
对于其他方法我们也可以分析,与前面分析的方法大同小异,所以,不再累赘。
5、AbstractQueuedSynchronizer示例详解一
借助下面示例来分析 AbstractQueuedSynchronizer 内部的工作机制。示例源码如下
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyThread extends Thread { private Lock lock; public MyThread(String name, Lock lock) { super(name); this.lock = lock; } public void run () { lock.lock(); try { System.out.println(Thread.currentThread() + " running"); } finally { lock.unlock(); } } } public class AbstractQueuedSynchronizerDemo { public static void main(String[] args) { Lock lock = new ReentrantLock(); MyThread t1 = new MyThread("t1", lock); MyThread t2 = new MyThread("t2", lock); t1.start(); t2.start(); } }
运行结果(可能的一种):
Thread[t1,5,main] running Thread[t2,5,main] running
结果分析: 从示例可知,线程t1与t2共用了一把锁,即同一个lock。可能会存在如下一种时序。
说明:首先线程t1先执行lock.lock操作,然后t2执行lock.lock操作,然后t1执行lock.unlock操作,最后t2执行lock.unlock操作。基于这样的时序,分析AbstractQueuedSynchronizer内部的工作机制。
- t1线程调用lock.lock方法,其方法调用顺序如下,只给出了主要的方法调用。
说明:其中,前面的部分表示哪个类,后面是具体的类中的哪个方法,AQS表示AbstractQueuedSynchronizer类,AOS表示AbstractOwnableSynchronizer类。
- t2线程调用lock.lock方法,其方法调用顺序如下,只给出了主要的方法调用。
说明: 经过一系列的方法调用,最后达到的状态是禁用t2线程,因为调用了LockSupport.park。
- t1线程调用lock.unlock,其方法调用顺序如下,只给出了主要的方法调用。
说明: t1线程中调用lock.unlock后,经过一系列的调用,最终的状态是释放了许可,因为调用了LockSupport.unpark。这时,t2线程就可以继续运行了。此时,会继续恢复t2线程运行环境,继续执行LockSupport.park后面的语句,即进一步调用如下。
说明:在上一步调用了LockSupport.unpark后,t2线程恢复运行,则运行 parkAndCheckInterrupt,之后,继续运行acquireQueued方法,最后达到的状态是头节点head与尾结点tail均指向了t2线程所在的结点,并且之前的头节点已经从sync队列中断开了。
- t2线程调用lock.unlock,其方法调用顺序如下,只给出了主要的方法调用。
说明: t2线程执行lock.unlock后,最终达到的状态还是与之前的状态一样。
6、AbstractQueuedSynchronizer示例详解二
下面我们结合Condition实现生产者与消费者,来进一步分析 AbstractQueuedSynchronizer 的内部工作机制。
- Depot(仓库)类
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class Depot { private int size; // 是不是应该加上volatile,保证可见性 private int capacity; private Lock lock; private Condition fullCondition; private Condition emptyCondition; // Depot depot = new Depot(500); public Depot(int capacity) { this.capacity = capacity; lock = new ReentrantLock(); fullCondition = lock.newCondition(); emptyCondition = lock.newCondition(); } public void produce(int no) { lock.lock(); int left = no; try { while (left > 0) { while (size >= capacity) { System.out.println(Thread.currentThread() + " before await"); fullCondition.await(); // 被唤醒 System.out.println(Thread.currentThread() + " after await"); } int inc = (left + size) > capacity ? (capacity - size) : left; // 500 left -= inc; // 0 size += inc; // 500 System.out.println("produce = " + inc + ", size = " + size); emptyCondition.signal(); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void consume(int no) { lock.lock(); int left = no; // 500 try { while (left > 0) { while (size <= 0) { // 500 System.out.println(Thread.currentThread() + " before await"); emptyCondition.await(); System.out.println(Thread.currentThread() + " after await"); } int dec = (size - left) > 0 ? left : size; // 0 left -= dec; size -= dec; System.out.println("consume = " + dec + ", size = " + size); fullCondition.signal(); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } }
- 测试类
class Consumer { private Depot depot; public Consumer(Depot depot) { this.depot = depot; } public void consume(int no) { new Thread(new Runnable() { @Override public void run() { depot.consume(no); } }, no + " consume thread").start(); } } class Producer { private Depot depot; public Producer(Depot depot) { this.depot = depot; } public void produce(int no) { new Thread(new Runnable() { @Override public void run() { depot.produce(no); } }, no + " produce thread").start(); } } public class ReentrantLockDemo { public static void main(String[] args) throws InterruptedException { Depot depot = new Depot(500); new Producer(depot).produce(500); new Producer(depot).produce(200); new Consumer(depot).consume(500); new Consumer(depot).consume(200); } }
- 运行结果(可能的一种):
produce = 500, size = 500 Thread[200 produce thread,5,main] before await consume = 500, size = 0 Thread[200 consume thread,5,main] before await Thread[200 produce thread,5,main] after await produce = 200, size = 200 Thread[200 consume thread,5,main] after await consume = 200, size = 0
说明: 根据结果,我们猜测一种可能的时序如下
说明: p1代表produce 500的那个线程,p2代表produce 200的那个线程,c1代表consume 500的那个线程,c2代表consume 200的那个线程。
- p1线程调用lock.lock,获得锁,继续运行,方法调用顺序在前面已经给出。
- p2线程调用lock.lock,由前面的分析可得到如下的最终状态。
说明: p2线程调用lock.lock后,会禁止p2线程的继续运行,因为执行了LockSupport.park操作。
- c1线程调用lock.lock,由前面的分析得到如下的最终状态。
说明: 最终c1线程会在sync queue队列的尾部,并且其结点的前驱结点(包含p2的结点)的waitStatus变为了SIGNAL。
- c2线程调用lock.lock,由前面的分析得到如下的最终状态。
说明: 最终c2线程会在sync queue队列的尾部,并且其结点的前驱结点(包含c1的结点)的waitStatus变为了SIGNAL。
- p1线程执行emptyCondition.signal,其方法调用顺序如下,只给出了主要的方法调用。
说明:AQS.CO表示AbstractQueuedSynchronizer.ConditionObject类。此时调用signal方法不会产生任何其他效果。
- p1线程执行lock.unlock,根据前面的分析可知,最终的状态如下。
说明:此时,p2线程所在的结点为头节点,并且其他两个线程(c1、c2)依旧被禁止,所以,此时p2线程继续运行,执行用户逻辑。
- p2线程执行fullCondition.await,其方法调用顺序如下,只给出了主要的方法调用。
说明: 最终到达的状态是新生成了一个结点,包含了p2线程,此结点在condition queue中;并且sync queue中p2线程被禁止了,因为在执行了LockSupport.park操作。从方法一些调用可知,在await操作中线程会释放锁资源,供其他线程获取。同时,head结点后继结点的包含的线程的许可被释放了,故其可以继续运行。由于此时,只有c1线程可以运行,故运行c1。
- 继续运行c1线程,c1线程由于之前被park了,所以此时恢复,继续之前的步骤,即还是执行前面提到的acquireQueued方法,之后,c1判断自己的前驱结点为head,并且可以获取锁资源,最终到达的状态如下。
说明: 其中,head设置为包含c1线程的结点,c1继续运行。
- c1线程执行 fullCondtion.signal,其方法调用顺序如下,只给出了主要的方法调用。
说明: signal方法达到的最终结果是将包含p2线程的结点从condition queue中转移到sync queue中,之后condition queue为null,之前的尾结点的状态变为SIGNAL。
- c1线程执行lock.unlock操作,根据之前的分析,经历的状态变化如下。
说明: 最终c2线程会获取锁资源,继续运行用户逻辑。
- c2线程执行emptyCondition.await,由前面的第七步分析,可知最终的状态如下。
说明: await操作将会生成一个结点放入condition queue中与之前的一个condition queue是不相同的,并且unpark头节点后面的结点,即包含线程p2的结点。
- p2线程被unpark,故可以继续运行,经过CPU调度后,p2继续运行,之后p2线程在AQS:await方法中被park,继续AQS.CO:await方法的运行,其方法调用顺序如下,只给出了主要的方法调用。
- p2继续运行,执行emptyCondition.signal,根据第九步分析可知,最终到达的状态如下。
说明: 最终,将condition queue中的结点转移到sync queue中,并添加至尾部,condition queue会为空,并且将head的状态设置为SIGNAL。
- p2线程执行lock.unlock操作,根据前面的分析可知,最后的到达的状态如下。
说明: unlock操作会释放c2线程的许可,并且将头节点设置为c2线程所在的结点。
- c2线程继续运行,执行fullCondition. signal,由于此时fullCondition的condition queue已经不存在任何结点了,故其不会产生作用。
- c2执行lock.unlock,由于c2是sync队列中最后一个结点,故其不会再调用unparkSuccessor了,直接返回true。即整个流程就完成了。
7、AbstractQueuedSynchronizer总结
对于 AbstractQueuedSynchronizer 的分析,最核心的就是sync queue的分析。
- 每一个结点都是由前一个结点唤醒;
- 当结点发现前驱结点是head并且尝试获取成功,则会轮到该线程运行;
- condition queue 中的结点向sync queue中转移是通过signal操作完成的;
- 当结点的状态为SIGNAL时,表示后面的结点需要运行。