带你读《图解算法小抄》十四、排序(16)

简介: 带你读《图解算法小抄》十四、排序(16)

带你读《图解算法小抄》十四、排序(15)https://developer.aliyun.com/article/1348135?groupCode=tech_library


总结思路

  • 将无序序列构建成一个堆,根据升序降序需求选择大顶堆
  • 将堆顶元素与末尾元素交换,将最大元素「沉」到数组末端
  • 重新调整结构,使其满足堆定义,然后继续交换堆顶与当前末尾元素,反复执行调整、交换步骤,直到整个序列有序。

步骤

这里想说的几点注意事项(代码实现的关键思路):

 

  • 第一步构建初始堆:是自底向上构建,从最后一个非叶子节点开始。
  • 第二步就是下沉操作让尾部元素与堆顶元素交换,最大值被放在数组末尾,并且缩小数组的length,不参与后面大顶堆的调整
  • 第三步就是调整:是从上到下,从左到右,因为堆顶元素下沉到末尾了,要重新调整这颗大顶堆

代码模板

官方的代码模板我参考了下,比一些书籍写的都好记,所以可以参考作为堆排序的模板

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
 // 整个流程就是上浮下沉var findKthLargest = function(nums, k) {
   let heapSize=nums.length
    buildMaxHeap(nums,heapSize) // 构建好了一个大顶堆
    // 进行下沉 大顶堆是最大元素下沉到末尾
    for(let i=nums.length-1;i>=nums.length-k+1;i--){
        swap(nums,0,i)
        --heapSize // 下沉后的元素不参与到大顶堆的调整
        // 重新调整大顶堆
         maxHeapify(nums, 0, heapSize);
    }
    return nums[0]
   // 自下而上构建一颗大顶堆
   function buildMaxHeap(nums,heapSize){
     for(let i=Math.floor(heapSize/2)-1;i>=0;i--){
        maxHeapify(nums,i,heapSize)
     }
   }
   // 从左向右,自上而下的调整节点
   function maxHeapify(nums,i,heapSize){
       let l=i*2+1
       let r=i*2+2
       let largest=i
       if(l < heapSize && nums[l] > nums[largest]){
           largest=l
       }
       if(r < heapSize && nums[r] > nums[largest]){
           largest=r
       }
       if(largest!==i){
           swap(nums,i,largest) // 进行节点调整
           // 继续调整下面的非叶子节点
           maxHeapify(nums,largest,heapSize)
       }
   }
   function swap(a,  i,  j){
        let temp = a[i];
        a[i] = a[j];
        a[j] = temp;
   }};

进行堆排序

findKthLargest(nums,nums.length)// 或者调整一下 let i=nums.length-1;i>=nums.length-k+1;的条件就行

5复杂度

名称

最佳情况

平均情况

最坏情况

内存

稳定性

备注

堆排序

n log(n)

n log(n)

n log(n)

1

 

6参考资料

维基百科

 

 

带你读《图解算法小抄》十四、排序(17)https://developer.aliyun.com/article/1348133?groupCode=tech_library


相关文章
|
4月前
|
算法
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
135 7
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
116 8
|
2月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
88 9
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
41 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
34 0
|
2月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
83 0
|
4月前
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
56 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
4月前
|
算法 搜索推荐 Java
算法实战:手写归并排序,让复杂排序变简单!
归并排序是一种基于“分治法”的经典算法,通过递归分割和合并数组,实现O(n log n)的高效排序。本文将通过Java手写代码,详细讲解归并排序的原理及实现,帮助你快速掌握这一实用算法。
51 0
|
4月前
|
算法 搜索推荐
算法设计 (分治法应用实验报告)基于分治法的合并排序、快速排序、最近对问题
这篇文章是关于分治法应用的实验报告,详细介绍了如何利用分治法实现合并排序和快速排序算法,并探讨了使用分治法解决二维平面上的最近对问题的方法,包括伪代码、源代码实现及时间效率分析,并附有运行结果和小结。

热门文章

最新文章