【Kubernetes的DevOps自动化,Jenkins上的Pipeline实现自动化构建、测试、部署、发布以及Bookinginfo实例的部署灰度发布故障注入流量】

简介: 【Kubernetes的DevOps自动化,Jenkins上的Pipeline实现自动化构建、测试、部署、发布以及Bookinginfo实例的部署灰度发布故障注入流量】

步骤

对于Kubernetes的DevOps自动化,Jenkins上的Pipeline可以实现自动化构建、测试、部署和发布。

以下是一些步骤:

  1. 在Jenkins中创建一个Pipeline项目。
  2. 在Pipeline定义中,设置源代码管理和构建步骤。例如,使用Git作为代码仓库,使用Maven或Gradle进行构建。
  3. 添加测试步骤,例如单元测试、集成测试和功能测试。可以使用Jenkins插件,如JUnit和Cucumber。
  4. 添加Kubernetes部署步骤,例如使用Kubectl或Helm进行部署。
  5. 添加发布步骤,例如将应用程序部署到生产环境或预发布环境。

仓库获取、构建镜像、部署、测试、发布等多个步骤。下面是一个基本的Kubernetes DevOps Pipeline的示例:

pipeline {
    agent {
        kubernetes {
            label 'my-pipeline'
            defaultContainer 'jnlp'
            yaml '''
apiVersion: v1
kind: Pod
metadata:
  labels:
    jenkins: slave
spec:
  securityContext:
    runAsUser: 1000
    fsGroup: 1000
  containers:
  - name: jnlp
    image: jenkins/jnlp-slave:latest
    imagePullPolicy: Always
'''
        }
    }
    stages {
        stage('Checkout') {
            steps {
                git branch: 'master', url: 'https://github.com/my-org/my-repo.git'
            }
        }
        stage('Build') {
            steps {
                container('docker') {
                    sh 'docker build -t my-image .'
                    sh 'docker push my-registry/my-image:${env.BUILD_NUMBER}'
                }
            }
        }
        stage('Deploy') {
            steps {
                container('kubectl') {
                    sh 'kubectl apply -f deployment.yml'
                }
            }
        }
        stage('Test') {
            steps {
                container('kubectl') {
                    sh 'kubectl rollout status deployment/my-app'
                }
                container('test') {
                    sh './run-tests.sh'
                }
            }
        }
        stage('Promote') {
            steps {
                container('kubectl') {
                    sh 'kubectl set image deployment/my-app my-app=my-registry/my-image:${env.BUILD_NUMBER}'
                }
            }
        }
    }
}

该Pipeline使用了Kubernetes的Pipeline插件来在Kubernetes集群中运行Jenkins代理并执行各个阶段。在该Pipeline中,包含了五个主要阶段:

  1. Checkout:从Git仓库中检出代码。
  2. Build:使用Docker构建镜像并推送到镜像仓库。
  3. Deploy:部署镜像到Kubernetes集群。
  4. Test:等待应用程序部署成功,执行自动化测试。
  5. Promote:将应用程序镜像推送到生产环境。

使用该Pipeline,您可以实现Kubernetes DevOps自动化,从而优化软件开发和部署流程。

对于Bookinginfo实例的部署灰度发布故障注入流量

可以采用以下步骤:

  1. 添加一个新的Kubernetes命名空间,用于测试环境。
  2. 将Bookinginfo应用程序部署到测试环境中。
  3. 添加灰度发布步骤,例如使用Istio进行流量管理,将一部分流量引导到测试环境中的Bookinginfo实例,一部分流量引导到生产环境中的Bookinginfo实例。
  4. 添加故障注入步骤,例如使用Chaos Engineering工具,引入一些故障,测试应用程序的容错性。
  5. 添加流量控制步骤,例如使用Istio进行动态流量控制和负载均衡,根据应用程序的运行状况调整流量分配。
  6. 监控应用程序的运行状况,例如使用Prometheus和Grafana进行监控和可视化。
  7. 部署灰度发布

在部署Bookinginfo实例的时候,我们可以采用灰度发布的方式,将新版本的实例逐步引入生产环境,以降低新版本引入生产环境时的风险。具体实现可以参考以下步骤:

a. 新增一组服务器,部署新版本的Bookinginfo实例,并开启灰度发布功能。灰度发布功能可以通过自定义请求头或者cookie来控制流量的分发情况。

b. 将部分流量引导到新版本的实例中。可以通过轮询、随机、权重等方式来实现流量的分发。

c. 监控新版本的实例运行情况,当确保新版本稳定可靠后,逐步增加流量比例,最终完成全量替换。

  1. 故障注入流量

在实现故障注入流量时,我们可以通过模拟网络异常、数据库错误、服务器宕机等异常情况,来测试系统的稳定性和容灾能力。具体实现可以参考以下代码:

import requests
import time
import random
# 模拟网络异常
def network_error():
    # 10%概率出现网络异常
    if random.randint(1, 10) == 1:
        raise requests.exceptions.Timeout
# 模拟数据库错误
def database_error():
    # 5%概率出现数据库错误
    if random.randint(1, 20) == 1:
        raise requests.exceptions.ConnectionError
# 模拟服务器宕机
def server_down():
    # 1%概率出现服务器宕机
    if random.randint(1, 100) == 1:
        raise requests.exceptions.HTTPError(500)
# 发送请求
def send_request(url):
    try:
        # 模拟异常情况
        network_error()
        database_error()
        server_down()
        r = requests.get(url)
        print('[INFO] Request success. Response:', r.text)
    except requests.exceptions.Timeout:
        print('[ERROR] Network timeout.')
    except requests.exceptions.ConnectionError:
        print('[ERROR] Database connection error.')
    except requests.exceptions.HTTPError:
        print('[ERROR] Server is down.')
    except Exception as ex:
        print('[ERROR] Unknown error:', ex)
if __name__ == '__main__':
    url = 'http://bookinginfo.com/api'
    # 模拟发送100次请求
    for i in range(100):
        send_request(url)
        time.sleep(1)  # 间隔1秒

以上代码可以模拟网络异常、数据库错误、服务器宕机等异常情况,通过捕捉相应的异常来判断请求是否成功。在测试产品稳定性和容灾能力时,我们可以增大异常出现的概率,来增加测试难度和风险。同时,我们还可以对不同的异常情况进行测试,以确保系统在不同情况下的容错能力。


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3天前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
15 0
|
14天前
|
存储 测试技术 对象存储
使用容器服务ACK快速部署QwQ-32B模型并实现推理智能路由
阿里云最新发布的QwQ-32B模型,通过强化学习大幅度提升了模型推理能力。QwQ-32B模型拥有320亿参数,其性能可以与DeepSeek-R1 671B媲美。
|
22天前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
56 12
|
22天前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
|
22天前
|
存储 Kubernetes 对象存储
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
|
22天前
|
边缘计算 调度 对象存储
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
|
22天前
|
存储 Kubernetes 对象存储
部署 DeepSeek 但 GPU 不足,ACK One 注册集群助力解决 IDC GPU 资源不足
部署 DeepSeek 但 GPU 不足,ACK One 注册集群助力解决 IDC GPU 资源不足
|
4月前
|
jenkins Devops Java
DevOps实践:Jenkins在持续集成与持续部署中的价值
【10月更文挑战第27天】在快速发展的软件开发领域,DevOps实践日益重要。Jenkins作为一款流行的开源自动化服务器,在持续集成(CI)和持续部署(CD)中扮演关键角色。本文通过案例分析,探讨Jenkins在Java项目中的应用,展示其自动化构建、测试和部署的能力,提高开发效率和软件质量。
128 2
|
24天前
|
监控 jenkins Shell
jenkins结合gitlab实现CI(持续集成)
通过本文的介绍,我们详细了解了如何结合Jenkins和GitLab实现持续集成。从环境准备、插件配置到Pipeline任务创建和CI流程监控,每一步都提供了详细的操作步骤和示例代码。希望本文能帮助开发者快速搭建起高效的CI系统,提高项目开发效率和代码质量。
54 8
|
2月前
|
Java jenkins 持续交付
Jenkins集成Maven
通过以上步骤,可以在Jenkins中成功集成Maven,实现自动化构建和部署。通过定时构建、SCM轮询等方式,可以确保代码库中的最新变更能够及时构建和测试,提高开发效率和代码质量。这种集成方式在实际项目中具有广泛的应用前景,能够显著提升团队的协作效率。
61 8

热门文章

最新文章