吴恩达机器学习--线性回归

简介: 吴恩达机器学习--线性回归

前言

线性回归:是一种通过属性的线性组合来进行预测的线性模型
其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。

一、单变量线性回归

1.导入必要的库

导入pandas、numpy和matplotlib.pyplot库

import pandas as pd  #导入pandas库
import numpy as np   #导入numpy库
import matplotlib.pyplot as plt   #导入matplotlib.pyplot库
plt.rcParams['font.sans-serif']=['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    #用来正常显示负号

2.读取数据

使用pandas库的read_csv()函数读取数据文件,数据文件中包含了人口和收益两列数据

data=pd.read_csv(r"d:线性回归/regress_data1.csv")   #读取数据

3.绘制散点图

使用data.plot()函数绘制散点图,展示人口与收益之间的关系

data.plot(kind="scatter",x="人口",y="收益")    #绘制散点图
plt.xlabel("人口",fontsize=10)                 #横坐标
plt.ylabel("收益",fontsize=10)                 #纵坐标
plt.title("人口与收益之间的关系")              #标题
plt.show()     #画图

a7581062dd964c1e9b6d5a414ae74022.png

4.划分数据

这里是为了方便后面计算,将一列全为1的列插入到数据中

将数据分为训练集和测试集,这里只使用了训练集

data.insert(0,"ones",1)    #插入列,便于后面计算
col_num=data.shape[1]      #训练特征个数
m=data.shape[0]            #训练标签个数
X=data.iloc[:,:col_num-1].values    #训练集的特征
y=data.iloc[:,col_num-1].values     #训练集的标签
y=y.reshape((m,1))                  

5.定义模型函数

定义h(X,w)函数用来计算模型预测值,这里采用的是线性模型

def h(X,w):
    return X@w

6.定义损失函数

定义cost(X,y,w)函数用来计算模型误差

def cost(X,y,w):
    return np.sum(np.power(h(X,w)-y,2))/(2*m)

7.求权重向量w

7.1 梯度下降函数

定义函数gradient_descent(X,y,w,n,a)用来执行梯度下降算法,更新权重向量w,并返回最终的权重向量和误差列表

def gradient_descent(X,y,w,n,a):
    t=w
    cost_lst=[]
    for i in range(n):
        error=h(X,w)-y
        for j in range(col_num-1):
            t[j][0]=w[j][0]-((a/m)*np.sum(error.ravel()*X[:,j].ravel()))
        w=t
        cost_lst.append(cost(X,y,w))
    return w,cost_lst

7.2 最小二乘法

定义函数least_square(X,y)用来执行最小二乘法,直接求出权重向量w,但是当n>10000时由于时间复杂度太大将导致程序运行超时

def least_square(X,y):
    w=np.linalg.inv(X.T@X)@X.T@y
    return w

8.训练模型

调用gradient_descent()函数训练模型,并输出误差随迭代次数变化的图像,用来观察模型的学习效果

其中,迭代次数越大,训练效果越好,学习率适中,既不可太大,也不可过小

n=10000    #迭代次数越多越好
a=0.003    #学习率适中,不能太大,也不能太小
w=np.zeros((col_num-1,1))  #初始化权重向量
w,cost_lst=gradient_descent(X,y,w,n,a)   #调用梯度下降函数
plt.plot(range(n),cost_lst,"r-+")
plt.xlabel("迭代次数")
plt.ylabel("误差")
plt.show()

52ddeaaae50f4997bb4dd55dbe218de2.png

9.绘制预测曲线

使用训练好的权重向量w绘制预测曲线,并将其与原始数据一起绘制在图像上,用来观察模型的预测效果

x=np.linspace(data["人口"].min(),data["人口"].max(),50)   #预测特征
y1=w[0,0]*1+w[1,0]*x      #预测标签
plt.scatter(data["人口"],data["收益"], label='训练数据')     #训练集
plt.plot(x,y1,"r-+",label="预测线")                         #预测集
plt.xlabel("人口",fontsize=10)
plt.ylabel("收益",fontsize=10)
plt.title("人口与收益之间的关系")
plt.show()

52bb4d4fbe52406196f38afe1e445c8d.png

10.试试正则化

使用L2正则化(岭回归)防止过拟合

def gradient_descents(X,y,w,n,a,l):
    t=w
    cost_lst=[]
    for i in range(n):
        error=h(X,w)-y
        for j in range(col_num-1):
            t[j][0]=w[j][0]-((a/m)*(np.sum(error.ravel()*X[:,j].ravel())+2*l*w[j,0]))
        w=t
        cost_lst.append(cost(X,y,w))
    return w,cost_lst
n=10000    #迭代次数越多越好
a=0.003    #学习率适中,不能太大,也不能太小
l=1        #λ
w=np.zeros((col_num-1,1))
w,cost_lst=gradient_descents(X,y,w,n,a,l)
plt.plot(range(n),cost_lst,"r-+")
plt.xlabel("迭代次数")
plt.ylabel("误差")
plt.show()

e2004469db114f4688bb311321b6c546.png

11.绘制预测曲线

使用训练好的权重向量w绘制预测曲线,并将其与原始数据一起绘制在图像上,用来观察模型的预测效果

x=np.linspace(data["人口"].min(),data["人口"].max(),50)
y1=w[0,0]*1+w[1,0]*x
plt.scatter(data["人口"],data["收益"], label='训练数据')
plt.plot(x,y1,"r-+",label="预测线")
plt.xlabel("人口",fontsize=10)
plt.ylabel("收益",fontsize=10)
plt.title("人口与收益之间的关系")
plt.show()

edd02be5482d4704b3c11923c6a15003.png

12.试试sklearn库

import pandas as pd  #导入pandas库
import numpy as np   #导入numpy库
import matplotlib.pyplot as plt   #导入matplotlib.pyplot库 
import sklearn       #导入sklearn库
from sklearn import linear_model
plt.rcParams['font.sans-serif']=['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    #用来正常显示负号
# 2.读取数据:使用pandas库的read_csv()函数读取数据文件。数据文件中包含了人口和收益两列数据。
data=pd.read_csv(r"d:线性回归/regress_data1.csv")   #读取数据    
data.insert(0,"ones",1)    #插入列
col_num=data.shape[1]      #列数
m=data.shape[0]            #行数
# 5.划分数据:将数据分为训练集和测试集,这里只使用了训练集。
X=data.iloc[:,:col_num-1].values    #训练集的特征
y=data.iloc[:,col_num-1].values     #训练集的标签
y.reshape((m,1))
mod=linear_model.LinearRegression()
mod.fit(X,y)
Y=mod.predict(X)
plt.scatter(X[:,1],y,marker='o',color='b')
plt.plot(X,Y,marker='+',color='r')
plt.xlabel("人口")
plt.ylabel("收益")
plt.show()

233c69eb778e457b92b668045080fd80.png

二、多变量线性回归

1.导入库

import pandas as pd  #导入pandas库
import numpy as np   #导入numpy库
import matplotlib.pyplot as plt   #导入matplotlib.pyplot库
plt.rcParams['font.sans-serif']=['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    #用来正常显示负号

2.读取数据

datas=pd.read_csv(r"d:/线性回归/regress_data2.csv")   #读取数据
datas=(datas-datas.mean())/datas.std()     #正则化

3.划分数据

datas.insert(0,'ones',1)          #插入列
col_num=datas.shape[1]            #训练特征个数
m=datas.shape[0]                  #训练标签
X=datas.iloc[:,:col_num-1].values  #训练特征
y=datas.iloc[:,col_num-1].values   #训练标签
y=y.reshape((m,1))                 

4.定义假设函数

def h(X,w):
    return X@w

5.定义损失函数

def cost(X,y,w):
    return np.sum(np.power(h(X,w)-y,2))/(2*m)

6.定义梯度下降函数

def gradient_descent(X,y,w,n,a):
    t=w
    cost_lst=[]
    for i in range(n):
        error=h(X,w)-y
        for j in range(col_num-1):
            t[j,0]=w[j,0]-((a/m)*np.sum(error.ravel()*X[:,j].ravel()))
        w=t
        cost_lst.append(cost(X,y,w))
    return w,cost_lst

7.训练模型

n=1000           #迭代次数
a=0.01           #学习率
w=np.zeros((col_num-1,1))     #初始化特征向量w
w,cost_lst=gradient_descent(X,y,w,n,a)
plt.plot(range(n),cost_lst,'r+-')
plt.xlabel("迭代次数")
plt.ylabel("误差")
plt.show()

8.运用sklearn绘图

import pandas as pd  
import numpy as np   
import matplotlib.pyplot as plt   
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
plt.rcParams['font.sans-serif'] = ['SimHei']   
plt.rcParams['axes.unicode_minus'] = False    
# 读取数据
datas = pd.read_csv(r"d:线性回归/regress_data2.csv")
datas = (datas - datas.mean()) / datas.std()
X = datas.iloc[:, :-1].values
y = datas.iloc[:, -1].values.reshape(-1, 1)
# 多项式回归
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X)
mod = linear_model.LinearRegression()
mod.fit(X_poly, y)
# 绘制拟合曲线
x1 = np.linspace(datas["面积"].min(), datas["面积"].max(), 50)
x2 = np.linspace(datas["房间数"].min(), datas["房间数"].max(), 50)
x1, x2 = np.meshgrid(x1, x2)
X_grid = np.column_stack((x1.flatten(), x2.flatten()))
X_grid_poly = poly.fit_transform(X_grid)
y_pred = mod.predict(X_grid_poly)
fig=plt.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(X[:,0], X[:,1], y, marker='o', color='b')
ax.plot_surface(x1, x2, y_pred.reshape(x1.shape), cmap='coolwarm')
ax.set_title("价格随面积与房间数的变化曲面")
ax.set_xlabel("面积")
ax.set_ylabel("房间数")
ax.set_zlabel("价格")
plt.show()

总结

线性回归三大要素

  1. 假设函数 h(X,w)
  2. 损失函数 cost(X,y,w)
  3. 梯度下降/最小二乘函数(求解权重向量w的函数)

普通线性回归步骤

  1. 导入库
  2. 读取数据
  3. 划分数据
  4. 假设函数(模型函数)
  5. 损失函数
  6. 梯度下降/最小二乘
  7. 训练模型
  8. 绘图预测

调用sklearn库进行线性回归的步骤

  1. 导入库
  2. 读取数据
  3. 调用sklearn库
  4. 绘图
目录
相关文章
|
6月前
|
机器学习/深度学习 算法 TensorFlow
机器学习算法简介:从线性回归到深度学习
【5月更文挑战第30天】本文概述了6种基本机器学习算法:线性回归、逻辑回归、决策树、支持向量机、随机森林和深度学习。通过Python示例代码展示了如何使用Scikit-learn、statsmodels、TensorFlow库进行实现。这些算法在不同场景下各有优势,如线性回归处理连续值,逻辑回归用于二分类,决策树适用于规则提取,支持向量机最大化类别间隔,随机森林集成多个决策树提升性能,而深度学习利用神经网络解决复杂模式识别问题。理解并选择合适算法对提升模型效果至关重要。
245 4
|
18天前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】解释什么是线性回归?
【5月更文挑战第15天】【机器学习】解释什么是线性回归?
|
1月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从线性回归到深度学习
【9月更文挑战第4天】在这篇文章中,我们将深入探讨机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过实际的代码示例,揭示这些模型背后的数学原理,以及如何在现实世界的问题中应用它们。无论你是初学者还是有经验的数据科学家,这篇文章都将为你提供新的视角和深入的理解。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习的奥秘:从线性回归到深度学习
【8月更文挑战第26天】本文将带领读者走进机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将探讨各种算法的原理、应用场景以及实现方法,并通过代码示例加深理解。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的知识和技能。让我们一起揭开机器学习的神秘面纱,探索这个充满无限可能的领域吧!
|
3月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:Python中的线性回归模型实现
【8月更文挑战第24天】在机器学习的世界中,线性回归是最基础也是应用最广泛的算法之一。本文将通过Python编程语言,使用scikit-learn库来实现一个简单的线性回归模型。我们将从理论出发,逐步深入到代码实现,最后通过一个实际数据集来验证模型的效果。无论你是机器学习的初学者,还是想要复习线性回归的基础知识,这篇文章都将为你提供有价值的信息。让我们一起踏上这段探索之旅吧!
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
114 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
5月前
|
机器学习/深度学习 数据采集 算法
【机器学习】线性回归:以房价预测为例
【机器学习】线性回归:以房价预测为例
369 1