Datawhale AI夏令营第四期魔搭-AIGC文生图方向Task1笔记

简介: 这段内容介绍了一个使用LoRA技术定制Stable Diffusion模型的工作流程。首先定义了提示词的结构,接着概述了LoRA作为轻量级微调方法的角色。ComfyUI作为一个图形化工具,简化了AI模型的配置与操作。示例脚本展示了如何通过Data-Juicer和DiffSynth-Studio进行数据准备、模型训练,并最终生成特定风格的二次元图像。通过不同的种子和提示词,生成了一系列具有一致风格但内容各异的高质量二次元角色图像。

output.png
提示词
提示词很重要,一般写法:主体描述,细节描述,修饰词,艺术风格,艺术家

举个例子

【promts】Beautiful and cute girl, smiling, 16 years old, denim jacket, gradient background, soft colors, soft lighting, cinematic edge lighting, light and dark contrast, anime, super detail, 8k

【负向prompts】(lowres, low quality, worst quality:1.2), (text:1.2), deformed, black and white,disfigured, low contrast, cropped, missing fingers

Lora
Stable Diffusion中的Lora(LoRA)模型是一种轻量级的微调方法,它代表了“Low-Rank Adaptation”,即低秩适应。Lora不是指单一的具体模型,而是指一类通过特定微调技术应用于基础模型的扩展应用。在Stable Diffusion这一文本到图像合成模型的框架下,Lora被用来对预训练好的大模型进行针对性优化,以实现对特定主题、风格或任务的精细化控制。

ComfyUI
ComfyUI 是一个工作流工具,主要用于简化和优化 AI 模型的配置和训练过程。通过直观的界面和集成的功能,用户可以轻松地进行模型微调、数据预处理、图像生成等任务,从而提高工作效率和生成效果。

a4c3848b-68a8-4b38-b040-c79c91b90c95.png
在ComfyUI平台的前端页面上,用户可以基于节点/流程图的界面设计并执行AIGC文生图或者文生视频的pipeline。

参考图控制
ControlNet是一种用于精确控制图像生成过程的技术组件。它是一个附加到预训练的扩散模型(如Stable Diffusion模型)上的可训练神经网络模块。扩散模型通常用于从随机噪声逐渐生成图像的过程,而ControlNet的作用在于引入额外的控制信号,使得用户能够更具体地指导图像生成的各个方面(如姿势关键点、分割图、深度图、颜色等)。

LoRA 样例脚本
第一步:安装
安装 Data-Juicer 和 DiffSynth-Studio

!pip install simple-aesthetics-predictor

!pip install -v -e data-juicer

!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision

!pip install -e DiffSynth-Studio

请在这里手动重启 Notebook kernel
第二步:下载数据集

from modelscope.msdatasets import MsDataset

ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)

保存数据集中的图片及元数据

import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm

os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")

第三步:数据处理
使用 data-juicer 处理数据

[4]
data_juicer_config = """

global parameters

project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl' # path to your dataset directory or file
np: 4 # number of subprocess to process your dataset

text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'

export_path: './data/data-juicer/output/result.jsonl'

process schedule

a list of several process operators with their arguments

process:

- image_shape_filter:
    min_width: 1024
    min_height: 1024
    any_or_all: any
- image_aspect_ratio_filter:
    min_ratio: 0.5
    max_ratio: 2.0
    any_or_all: any

"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())

!dj-process --config data/data-juicer/data_juicer_config.yaml

保存处理好的数据

[5]
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm

texts, file_names = [], []
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as file:
for data_id, data in enumerate(tqdm(file.readlines())):
data = json.loads(data)
text = data["text"]
texts.append(text)
image = Image.open(data["image"][0])
image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg"
image.save(image_path)
file_names.append(f"{data_id}.jpg")
data_frame = pd.DataFrame()
data_frame["file_name"] = file_names
data_frame["text"] = texts
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig")
data_frame

第四步:训练模型
下载模型

[6]
from diffsynth import download_models

download_models(["Kolors", "SDXL-vae-fp16-fix"])

查看训练脚本的输入参数

[7]
!python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py -h

开始训练

提示:

在训练命令中填入 --modelscope_model_id xxxxx 以及 --modelscope_access_token xxxxx 后,训练程序会在结束时自动上传模型到 ModelScope
部分参数可根据实际需求调整,例如 lora_rank 可以控制 LoRA 模型的参数量

[8]
import os

cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \
--lora_rank 16 \
--lora_alpha 4.0 \
--dataset_path data/lora_dataset_processed \
--output_path ./models \
--max_epochs 1 \
--center_crop \
--use_gradient_checkpointing \
--precision "16-mixed"
""".strip()

os.system(cmd)

加载模型

[9]
from diffsynth import ModelManager, SDXLImagePipeline
from peft import LoraConfig, inject_adapter_in_model
import torch

def load_lora(model, lora_rank, lora_alpha, lora_path):
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_q", "to_k", "to_v", "to_out"],
)
model = inject_adapter_in_model(lora_config, model)
state_dict = torch.load(lora_path, map_location="cpu")
model.load_state_dict(state_dict, strict=False)
return model

Load models

model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/kolors/Kolors/text_encoder",
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
"models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors"
])
pipe = SDXLImagePipeline.from_model_manager(model_manager)

Load LoRA

pipe.unet = load_lora(
pipe.unet,
lora_rank=16, # This parameter should be consistent with that in your training script.
lora_alpha=2.0, # lora_alpha can control the weight of LoRA.
lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt"
)

生成图像

[19]
torch.manual_seed(0)
image = pipe(
prompt="二次元,一个紫色短发小女孩,在床上甜美的睡着了,全身,粉色连衣裙,梦到了美丽的风景",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("1.jpg")
100%|██████████| 50/50 [00:17<00:00, 2.79it/s]

[20]
torch.manual_seed(1)
image = pipe(
prompt="二次元,日系动漫,博物馆的门口,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙在去博物馆的门口",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("2.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.75it/s]

[21]
torch.manual_seed(2)
image = pipe(
prompt="二次元,日系动漫,博物馆的室内,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙站着,看墙上的画,露出憧憬的神情",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,色情擦边",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("3.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.75it/s]

[22]
torch.manual_seed(5)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙,对着流星许愿,闭着眼睛,十指交叉,侧面",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,扭曲的手指,多余的手指",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("4.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.73it/s]

[23]
torch.manual_seed(0)
image = pipe(
prompt="二次元,一个紫色中等长度头发小女孩穿着粉色吊带漏肩连衣裙,在画室练习画画",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("5.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.72it/s]

[29]
torch.manual_seed(1)
image = pipe(
prompt="二次元,紫色长发少女,穿着粉色吊带漏肩连衣裙看着墙上,墙上有幅风景画",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("6.jpg")
100%|██████████| 50/50 [00:17<00:00, 2.78it/s]

[30]
torch.manual_seed(7)
image = pipe(
prompt="二次元,紫色长发少女很高兴,在人山人海的人群看画",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("7.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.75it/s]

[25]
torch.manual_seed(0)
image = pipe(
prompt="二次元,紫色长发少女,穿着黑色礼服,手里拿着一个奖杯,背后是她画好的画",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("8.jpg")
100%|██████████| 50/50 [00:18<00:00, 2.75it/s]

[31]
import numpy as np
from PIL import Image

images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
np.concatenate(images[0:2], axis=1),
np.concatenate(images[2:4], axis=1),
np.concatenate(images[4:6], axis=1),
np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))
image

相关文章
|
9天前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
9天前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
9天前
|
人工智能 并行计算 PyTorch
AI计算机视觉笔记十八:Swin Transformer目标检测环境搭建
本文详细记录了Swin Transformer在AutoDL平台上的环境搭建与训练过程。作者从租用GPU实例开始,逐步介绍了虚拟环境的创建、PyTorch安装、mmcv及mmdetection的配置,并解决了安装过程中遇到的各种问题,如cython版本冲突等。最后,通过修改代码实现目标检测结果的保存。如需了解更多细节或获取完整代码,请联系作者。原文链接:[原文链接](请在此处插入原文链接)。
|
9天前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
9天前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
9天前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
9天前
|
人工智能 TensorFlow 算法框架/工具
AI计算机视觉笔记十七:实例分割
本文介绍了计算机视觉中的实例分割技术,通过结合目标检测和语义分割的方法,实现对图像中不同实例的精确区分与标记。以识别多只猫为例,详细描述了使用Mask R-CNN模型进行实例分割的过程,并提供了相关代码及环境搭建指南。通过实例演示,展示了如何利用该技术成功识别并分割出图像中的各个对象。
|
9天前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
9天前
|
传感器 人工智能 算法
AI计算机视觉笔记二十七:YOLOV8实现目标追踪
本文介绍了使用YOLOv8实现人员检测与追踪的方法。通过为每个人员分配唯一ID,实现持续追踪,并可统计人数,适用于小区或办公楼出入管理。首先解释了目标检测与追踪的区别,接着详细描述了使用匈牙利算法和卡尔曼滤波实现目标关联的过程。文章提供了基于IOU实现追踪的具体步骤,包括环境搭建、模型加载及追踪逻辑实现。通过示例代码展示了如何使用YOLOv8进行实时视频处理,并实现人员追踪功能。测试结果显示,该方法在实际场景中具有较好的应用潜力。
|
9天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。