从大数据平台CDP的架构看大数据的发展趋势 1

简介: 从大数据平台CDP的架构看大数据的发展趋势

大家好,我是明哥!

1 CDP 介绍

熟悉大数据业界的小伙伴们都知道,Cloudera 在跟 HortonWorks 合并后,便推出了新一代大数据平台 CDP,并正在逐步停止对原有的大数据平台 CDH 和 HDP 的维护。

下图简要介绍了目前市面上主流CDH和HDP版本的关键时间点

  • HDP2.x和CDH5.x对应的是hadoop2.x
  • HDP3.x和CDH6.x对应的是hadoop3.x
  • 目前官方已经停止了对HDP2.x和CDH5.X的技术支持
  • 官方对HDP3.x和CDH6.x的技术支持也都会在最近半年停止
  • 具体来讲,HDP3.x的最新版HDP3.1,会在2021/12月停止技术支持
  • 具体来讲,CDH6.x的最新版CDH6.3,会在2022/3月停止技术支持

image.png


CDP 可以认为是将原来的 CDH/HDP 融合在了一起,具体融合方式如下图所示,关键点是:

  • 淘汰了竞争的技术
  • 融合了重叠的技术
  • 保留了互补的技术
  • 升级了共享的技术
  • 并增加了某些新功能

image.png

image.png

2 CDP 的不同部署形态

CDP 对应不同场景,推出了两大部署形态:

  • 对应公有云场景的 CDP public cloud, 以 PaaS 形式对外提供服务,目前已经对接了三大公有云厂商 aws, gcp, azure;
  • 对应私有云场景和数据中心场景的 CDP private cloud, 包括 CDP private cloud base 和 CDP private cloud plus,其中前者对应的就是原来场景的 CDH 和 HDP,后者底层封装使用了 docker 和 k8s,经常被用来做计算集群;
  • 以上两个版本底层对应的是同样的 cloudera runtime, 其实质就是大数据各个具体组件,如 hdfs/yarn/hive/spark 等等。

image.png

  • 随着各行各业数字化转型的推进,当前企业的业务系统,上云是一大趋势,且上云的最终形态,是多个公有云和私有云的混合部署形态,即混合云。在次背景下,Cloudera 也整合并重磅推出了 CDP Hybrid Cloud:

image.png

image.png

3 CDP Hybrid Cloud 的架构

CDP Hybrid Cloud 顺应了企业数字化转型并最终使用混合云的大趋势,以统一的体验整合了公有云和私有云的资源,其最终架构如下图所示:

image.png

这里有几个要点解释下:

  • 用户通过熟悉的 Cloudera Manager,使用熟悉的 parcel包,来安装和管理 CDP BASE CLUSETER, 也就是 CDP private cloud base, 就像原来安装和管理 CDH 一样;
  • 用户通过熟悉的 Cloudera Manager,在需要的时候,使用 docker 镜像,在公有云上或私有云上,安装和管理一个或多个 ECS 或 OCP; ( ECS: Amazon Elastic Container Service; OCP: Red Hat OpenShift Container Platform, 两者都是基于 K8S/DOCKER的封装);
  • CDP BASE CLUSETER,主要当做存储集群来使用,当不使用其计算能力时,甚至可以不安装 impala/hs2/spark等计算引擎;
  • ECS 或 OCP,主要当做计算集群来使用,可以不安装也可以安装多个,当不使用其存储能力时,可以不安装 hdfs/ozone 等存储引擎;
  • ECS 或 OCP,对应不同的使用场景,可以安装多个集群,比如对应数仓场景的 CDW(cloudera datawarehouse, 其底层主要是hs2,impala,hue),对应机器学习的CML (cloudera machile learning,其底层主要是 python/r/scala 的jupiter notebook),对应数据工程的 CDE(cloudera data engineering,其底层主要是 spark,airflow)
  • 当然在复杂的场景下,CDP BASE CLUSETER 和 ECS/OCP,也可以是多对多的关系:


image.png

image.pngimage.png

image.png

image.png

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
SQL 人工智能 分布式计算
ODPS十五周年实录|构建 AI 时代的大数据基础设施
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 张治国:阿里云智能集团技术研究员、阿里云智能计算平台事业部 ODPS-MaxCompute 负责人 活动:【数据进化·AI 启航】ODPS 年度升级发布
235 9
|
6月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
319 0
|
4月前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
1218 36
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
4月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
406 1
|
6月前
|
消息中间件 分布式计算 大数据
“一上来就搞大数据架构?等等,你真想清楚了吗?”
“一上来就搞大数据架构?等等,你真想清楚了吗?”
126 1
|
5月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。
|
7月前
|
存储 缓存 分布式计算
OSS大数据分析集成:MaxCompute直读OSS外部表优化查询性能(减少数据迁移的ETL成本)
MaxCompute直读OSS外部表优化方案,解决传统ETL架构中数据同步延迟高、传输成本大、维护复杂等问题。通过存储格式优化(ORC/Parquet)、分区剪枝、谓词下推与元数据缓存等技术,显著提升查询性能并降低成本。结合冷热数据分层与并发控制策略,实现高效数据分析。
205 2
|
7月前
|
架构师 Oracle 大数据
从大数据时代变迁到数据架构师的精通之路
无论从事何种职业,自学能力都显得尤为重要。为了不断提升自己,我们可以尝试建立一套个性化的知识目录或索引,通过它来发现自身的不足,并有针对性地进行学习。对于数据架构师而言,他们需要掌握的知识领域广泛而深入,不仅包括硬件、网络、安全等基础技术,还要了解应用层面,并熟练掌握至少一门编程语言。同时,深入理解数据库技术、具备大数据实操经验以及精通数据仓库建模和ELT技术也是必不可少的。只有这样,数据架构师才能具备足够的深度和广度,应对复杂的业务和技术挑战。 构建个人知识体系是数据架构师在学习和工作中的一项重要任务。通过系统化、不断深化的知识积累,数据架构师能够有效应对快速变化的商业环境和技术革新,进一
|
6月前
|
人工智能 分布式计算 大数据
探索 ODPS:大数据时代的得力助手
在大数据蓬勃发展、 AI 技术席卷各行业的当下,阿里云 ODPS 作为大数据平台体系,凭借其强大的功能和广泛的应用,为众多从业者和企业带来了深远的影响。我有幸深入使用 ODPS,从中收获颇丰。
152 0
|
4月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
353 14