Python中绘制移动平均线(MA)

简介: 要在Python中绘制移动平均线(MA),可以使用matplotlib和pandas库。pandas库提供了方便的函数来计算移动平均线,matplotlib库则用于绘制图表。

要在Python中绘制移动平均线(MA),可以使用matplotlib和pandas库。pandas库提供了方便的函数来计算移动平均线,matplotlib库则用于绘制图表。

以下是一个简单的示例,演示如何使用pandas和matplotlib库绘制移动平均线:

python
import pandas as pd
import matplotlib.pyplot as plt

加载数据

data = pd.read_csv('your_data.csv')

计算移动平均线

ma5 = data['Close'].rolling(window=5).mean()
ma10 = data['Close'].rolling(window=10).mean()
ma20 = data['Close'].rolling(window=20).mean()

绘制K线图和移动平均线

fig, ax = plt.subplots()
ax.plot(data.index, data['Close'], label='Close')
ax.plot(ma5.index, ma5, label='MA5')
ax.plot(ma10.index, ma10, label='MA10')
ax.plot(ma20.index, ma20, label='MA20')
ax.legend()
plt.show()
在上面的代码中,首先使用pandas库加载数据。然后,使用rolling函数计算不同周期的移动平均线,例如5天、10天和20天。最后,使用matplotlib库的plot函数绘制K线图和移动平均线。legend函数用于显示图例,show函数用于显示图表。

要自定义移动平均线的外观,可以使用matplotlib库的许多其他参数。有关更多信息,请参阅matplotlib库的文档。

相关文章
|
11月前
|
Serverless Python 数据可视化
在Python中绘制移动平均线(MA)
【5月更文挑战第1天】使用Python的pandas和matplotlib库绘制移动平均线示例:加载CSV数据,计算5天、10天和20天MA,然后在图表上绘制收盘价及移动平均线。matplotlib的plot和legend函数用于绘图和添加图例,显示自定义图表。查阅matplotlib文档以了解更多定制选项。
197 1
|
11月前
|
Serverless Python
使用Python的pandas和matplotlib库绘制移动平均线(MA)示例
使用Python的pandas和matplotlib库绘制移动平均线(MA)示例:加载CSV数据,计算5日、10日和20日MA,然后在K线图上绘制。通过`rolling()`计算平均值,`plot()`函数展示图表,`legend()`添加图例。可利用matplotlib参数自定义样式。查阅matplotlib文档以获取更多定制选项。
312 1
|
算法
python-大智慧-VMACD-量指数平滑移动平均线
python-大智慧-VMACD-量指数平滑移动平均线
130 0
|
1月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
24天前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
82 28
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
1月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
38 4
|
1月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
1月前
|
数据采集 搜索推荐 C语言
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
|
1月前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境