【数据结构】 二叉树面试题讲解->贰

简介: 【数据结构】 二叉树面试题讲解->贰

🌏引言

二叉树的操作算法是笔试面试中较为常见的题目。

本文将着重介绍平时面试中常见的关于二叉树的应用题目,马上要进行秋招了。希望对你们有帮助 _😀

🎄二叉树遍历

🐱‍👤题目描述:

编一个程序,读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。 例如如下的先序遍历字符串: ABC##DE#G##F### 其中“#”表示的是空格,空格字符代表空树。建立起此二叉树以后,再对二叉树进行中序遍历,输出遍历结果。

📌输入描述:

输入包括1行字符串,长度不超过100。

📌输出描述:

可能有多组测试数据,对于每组数据, 输出将输入字符串建立二叉树后中序遍历的序列,每个字符后面都有一个空格。 每个输出结果占一行。

🐱‍🐉示例:

输入: abc##de#g##f###

输出:c b e g d f a

🐱‍👓思路解析:

首先我们先来看一下示例输入的二叉树的形状

我们首先需要做的是创建一个二叉树类,用于建立一个新的二叉树

class TreeNode1 {
    char val;
    TreeNode1 left;
    TreeNode1 right;
    TreeNode1() {}
    TreeNode1(char val) {
        this.val = val;
    }
    TreeNode1(char val, TreeNode1 left, TreeNode1 right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}

接下来我们需要

  • 依旧采用递归的思想
  • 对字符串的每一个元素进行遍历,并进行判断
  • 在遍历时,我们创建一个静态变量为size,此后每遍历一个元素,size就++
  • 若不为’#',则该结点设为根节点
  • 并且size++;
  • 然后因为是前序遍历,所以根节点后面应该是左子树,然后是右子树
  • 若为’#',则该节点为null,我们只需要size++即可
  • 最后返回该结点就好

代码实现如下:

public static TreeNode1 creatTree(String str) {
        TreeNode1 root = null;
        if (str.charAt(i) != '#') {
            root = new TreeNode1(str.charAt(i));
            i++;
            root.left = creatTree(str);
            root.right = creatTree(str);
        } else {
            i++;
        }
        return root;
    }

然后根据题意我们还需要进行一个中序遍历,这里我就不做赘述了,又不懂的小伙伴可以去看一下博主对于【数据结构】二叉数的存储与基本操作的实现的讲解

实现如下:

public static void inorder(TreeNode1 root) {
        if (root == null) {
            return;
        }
        inorder(root.left);
        System.out.print(root.val + " ");
        inorder(root.right);
    }
}

🐱‍🏍完整代码实现:

import java.util.Scanner;
class TreeNode1 {
    char val;
    TreeNode1 left;
    TreeNode1 right;
    TreeNode1() {}
    TreeNode1(char val) {
        this.val = val;
    }
    TreeNode1(char val, TreeNode1 left, TreeNode1 right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}
public class Main {
    public static int i = 0;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        while (in.hasNextLine()) { // 注意 while 处理多个 case
            i = 0;
            String st = in.nextLine();
            TreeNode1 root = new TreeNode1();
            root = creatTree(st);
            inorder(root);
        }
    }
    public static TreeNode1 creatTree(String str) {
        TreeNode1 root = null;
        if (str.charAt(i) != '#') {
            root = new TreeNode1(str.charAt(i));
            i++;
            root.left = creatTree(str);
            root.right = creatTree(str);
        } else {
            i++;
        }
        return root;
    }
    public static void inorder(TreeNode1 root) {
        if (root == null) {
            return;
        }
        inorder(root.left);
        System.out.print(root.val + " ");
        inorder(root.right);
    }
}

🌳二叉树的最近公共祖先

🐱‍👤题目描述:

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    }

🐱‍🐉示例:

📌示例一

📌示例二

🐱‍👓思路解析

本题博主提供两种解题思路

🚩思路一

我们发现:

  • 如果p,q不是根节点,且p,q一个在左子树被找到,一个在右子树被找到
  • 那么该根节点为最近公共祖先
  • 若该根节点为p或者q,那么自身则为最近祖先

    若最后都没有找到,说明没有,返回空

🚩思路二

我们建立两个栈:

  • 栈1用于存储找到p结点的路径
  • 栈2用于存储找到q结点的路径
  • 然后我们对两个栈求长度,把栈长度比较长的栈进行出栈,直到两个栈长度相等
  • 然后同时出栈进行一一比对,相同则为p、q的最近公共祖先

    这种思路的解题难点在于如何找到p、q的路径并放入栈中,博主采用的做法如下:
  • 首先我们对二叉树与所找p、q结点进行判断
  • 若为空返回false
  • 然后我们需要对当前根节点进行判断,若为我们要找的p或q
  • 则返回true
  • 若没有我们便对该根节点的左子树进行入栈并进行判断,若找到返回true
  • 若没有找到则将该左子树进行出栈
  • 然后对右子树进行同样操作
  • 最后若都没找到,返回false

然后我们只需要对两栈元素进行出栈进行比对就好了,最先相等的就为我们的最近公共祖先

🐱‍🏍代码实现:

🎈思路一代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(p == root || q == root) {
            return root;
        }
        if(root == null) {
            return null;
        }
        TreeNode l = lowestCommonAncestor(root.left,p,q);
        TreeNode r = lowestCommonAncestor(root.right,p,q);
        if(l != null && r != null) {
            return root;
        } else if(l != null) {
            return l;
        } else if(r != null) {
            return r;
        }
        return null;
    }
}

🎈思路二代码实现

class Solution {
        public boolean getPath(TreeNode root, TreeNode node,
                           Deque<TreeNode> stack) {
        if(root == null || node == null)return false;
        stack.push(root);
        //放完之后 要检查
        if(root == node) return true;
        boolean ret1 = getPath(root.left,node,stack);
        if(ret1) return true;
        boolean ret2 = getPath(root.right,node,stack);
        if(ret2) return true;
        stack.pop();
        return false;
    }
    public TreeNode lowestCommonAncestor2(TreeNode root, TreeNode p, TreeNode q) {
        //1、两个栈当中 存储好数据
        Deque<TreeNode> stack1 = new LinkedList<>();
        getPath(root,p,stack1);
        Deque<TreeNode> stack2 = new LinkedList<>();
        getPath(root,q,stack2);
        //2、判断栈的大小
        int size1 = stack1.size();
        int size2 = stack2.size();
        if(size1 > size2) {
            int size = size1-size2;
            while (size != 0) {
                stack1.pop();
                size--;
            }
        }else {
            int size = size2-size1;
            while (size != 0) {
                stack2.pop();
                size--;
            }
        }
        //栈里面数据的个数 是一样的
        while (!stack1.isEmpty() && !stack2.isEmpty()) {
            if(stack1.peek() != stack2.peek()) {
                stack1.pop();
                stack2.pop();
            }else {
                return stack1.peek();
            }
        }
        return null;
    }
}

🎍从前序与中序遍历序列构造二叉树

🐱‍👤题目描述

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
    }
}

🐱‍🐉示例:

🐱‍👓思路解析:

我们知道前序遍历里面第一个存储的是我们的根节点

那我们就可以在我们中序遍历中找到该结点,则该结点两边就为该根节点的左右子树

对于任意一颗树而言,前序遍历的形式总是

[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]

即根节点总是前序遍历中的第一个节点。而中序遍历的形式总是

[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

我们的做法是这样的

  • 我们对前序遍历结果进行下标利用下标 i 遍历,并放入到二叉树中

  • 对中序遍历的元素设两个下标,一个记录最左边,一个记录最右边

  • 对前序遍历里的每一个元素我们会在中序遍历里进行查找,找到后
  • 我们的inbegin与inend在左右子树里又会有新的指向

  • 然后我们利用递归的思想,对所有元素进行遍历
  • 结束条件为inend < inbengin

🐱‍🏍代码实现:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int i = 0;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        return buildTreeChild(preorder,inorder,0,inorder.length-1);
    }
    public TreeNode buildTreeChild(int[] preorder, int[] inorder,
    int inbegin,int inend) {
        if(inbegin > inend) {
            return null;
        }
        TreeNode root = new TreeNode(preorder[i]);
        //找到当前根,在中序遍历的位置
        int rootIndex = findIndex(inorder,inbegin,inend,preorder[i]);
        i++;
        root.left = buildTreeChild(preorder,inorder,inbegin,rootIndex-1);
        root.right = buildTreeChild(preorder,inorder,rootIndex+1,inend);
        return root;
    }
    private int findIndex( int[] inorder,int inbegin,int inend, int key) {
        for(int i = inbegin;i <= inend; i++) {
            if(inorder[i] == key) {
                return i;
            }
        }
        return -1;
    }
}

🌲拓展——从中序与后序遍历序列构造二叉树

与从前序与中序遍历序列构造二叉树实现类似,这里不再做过多赘述

代码实现:

class Solution2 {
        public int i = 0;
        public TreeNode buildTree(int[] inorder, int[] postorder) {
            i = postorder.length-1;
            return buildTreeChild(postorder,inorder,0,inorder.length-1);
        }
        public TreeNode buildTreeChild(int[] postorder, int[] inorder,
                                       int inbegin,int inend) {
            if(inbegin > inend) {
                return null;
            }
            TreeNode root = new TreeNode(postorder[i]);
            //找到当前根,在中序遍历的位置
            int rootIndex = findIndex(inorder,inbegin,inend,postorder[i]);
            i--;
            root.right = buildTreeChild(postorder,inorder,rootIndex+1,inend);
            root.left = buildTreeChild(postorder,inorder,inbegin,rootIndex-1);
            return root;
        }
        private int findIndex( int[] inorder,int inbegin,int inend, int key) {
            for(int i = inbegin;i <= inend; i++) {
                if(inorder[i] == key) {
                    return i;
                }
            }
            return -1;
        }
    }

⭕总结

关于《【数据结构】 二叉树面试题讲解->贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

相关文章
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
107 8
|
2月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
35 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
26 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
28 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
2月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
28 1
|
2月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
26 1
|
2月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
1月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
1月前
|
算法 Java
JAVA 二叉树面试题
JAVA 二叉树面试题
17 0
|
2月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆