【数据结构】时间、空间复杂度

简介: 【数据结构】时间、空间复杂度

1. 算法效率


算法效率分析分为两种:第一种是时间效率,第二种是空间效率。


时间效率被称为时间复杂度,而空间效率被称作空间复杂度。

时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。


在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


3. 时间复杂度


3.1 时间复杂度的概念

时间复杂度的定义: 在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。


但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。


3.2 大O的渐进表示法

试计算下面代码中的 func1 基本操作执行了多少次?


void func1(int N){
    int count = 0;
    for (int i = 0; i < N ; i++) {
        for (int j = 0; j < N ; j++) {
            count++;
        }
    }
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
    System.out.println(count);
}

Func1 执行的基本操作数为:N* N+2* N+10

b7a797ca9bb5b50f334c50086e49ccbc_e1e2609a9c25449b962e09d1aaa016d7.png



  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。


大O符号(Big O notation):是用于描述函数渐进行为的数学符号。


3.3 推导大O阶方法

  • 用常数1取代运行时间中的所有加法常数。
  • 在修改后的运行次数函数中,只保留最高阶项。
  • 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。


另外有些算法的时间复杂度存在最好、平均和最坏情况:


  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


3.4 常见时间复杂度计算举例

实例1:


// 计算func2的时间复杂度?
        void func2(int N) {
            int count = 0;
            for (int k = 0; k < 2 * N ; k++) {
                count++;
            }
            int M = 10;
            while ((M--) > 0) {
                count++;
            }
            System.out.println(count);
        }

5eb4ee0e05714fed5f0a686f2d3f83e1_d9a68dcc7f974b9d85103b5db345f73b.png

上述代码的基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)


实例2:

// 计算func3的时间复杂度?
        void func3(int N, int M) {
            int count = 0;
            for (int k = 0; k < M; k++) {
                count++;
            }
            for (int k = 0; k < N ; k++) {
                count++;
            }
            System.out.println(count);
        }

a0dea0be02876d455aab80450bd209f2_188101e3ff3b4428b6fc8a54421f6bd3.png


上述代码基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)


实例3:


 // 计算func4的时间复杂度?
        void func4(int N) {
            int count = 0;
            for (int k = 0; k < 100; k++) {
                count++;
            }
            System.out.println(count);
        }

6a0e6153566ff6860a937f41b8ae21bd_515366bf1ffc4ea5bc2a778afb0a0338.png


上述代码基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)


实例4:


// 计算bubbleSort的时间复杂度?
        void bubbleSort(int[] array) {
            for (int end = array.length; end > 0; end--) {
                boolean sorted = true;
                for (int i = 1; i < end; i++) {
                    if (array[i - 1] > array[i]) {
                        Swap(array, i - 1, i);
                        sorted = false;
                    }
                }
                if (sorted == true) {
                    break;
                }
            }
        }

39bd8c61d4e5305e79854fe888380726_0eba4aa516594bc4bd9400d46d3f258b.png


上述代码基本操作执行最好N次,最坏执行了(N*(N-1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)


实例5:


// 计算binarySearch的时间复杂度?
        int binarySearch(int[] array, int value) {
            int begin = 0;
            int end = array.length - 1;
            while (begin <= end) {
                int mid = begin + ((end-begin) / 2);
                if (array[mid] < value)
                    begin = mid + 1;
                else if (array[mid] > value)
                    end = mid - 1;
                else
                    return mid;
            }
            return -1;
        }

6459f6ef1f9d493f71c008c7c40bcadb_9a58957ea2f042e69311c7a6b984a469.png


上述代码基本操作执行最好1次,最坏log2(N)次,时间复杂度为 O(log2(N))。

在算法分析中表示是底数为2,对数为N,有些地方会写成lgN。


实例6:


// 计算阶乘递归factorial的时间复杂度?
    long factorial(int N) {
      return N < 2 ? N : factorial(N-1) * N;
    }

通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。


实例7:


// 计算斐波那契递归fibonacci的时间复杂度?
    int fibonacci(int N) {
      return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
    }

b9b7bedf056316b93fbbf9d777f9a3dd_ae8f1ef3cfb74cc2b828afd52d302edf.png


通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2^ N)


4. 空间复杂度


空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表法。


实例1:


// 计算bubbleSort的空间复杂度?
        void bubbleSort(int[] array){
            for (int end = array.length; end > 0; end--) {
                boolean sorted = true;//开辟一个空间
                for (int i = 1; i < end; i++) {
                    if (array[i - 1] > array[i]) {
                        Swap(array, i - 1, i);
                        sorted = false;
                    }
                }
                if (sorted == true) {
                    break;
                }
            }
        }

使用了常数个额外空间,所以空间复杂度为 O(1)


实例2:


// 计算fibonacci的空间复杂度?
        int[] fibonacci(int n) {
            long[] fibArray = new long[n + 1];//开辟了n个空间
            fibArray[0] = 0;
            fibArray[1] = 1;
            for (int i = 2; i <= n ; i++) {
                fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
            }
            return fibArray;
        }

动态开辟了N个空间,空间复杂度为 O(N)


实例3:


// 计算阶乘递归Factorial的空间复杂度?
        long factorial(int N) {
            return N < 2 ? N : factorial(N-1)*N;
        }

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)


相关文章
|
7月前
|
存储 算法
数据结构——lesson1时间复杂度和空间复杂度
数据结构——lesson1时间复杂度和空间复杂度
|
7月前
|
机器学习/深度学习 存储 缓存
数据结构从入门到精通——算法的时间复杂度和空间复杂度
算法的时间复杂度和空间复杂度是评估算法性能的两个重要指标。时间复杂度主要关注算法执行过程中所需的时间随输入规模的变化情况,而空间复杂度则关注算法执行过程中所需的最大存储空间或内存空间。
344 0
|
7月前
|
机器学习/深度学习 存储 算法
数据结构 | 算法的时间复杂度和空间复杂度【详解】(二)
数据结构 | 算法的时间复杂度和空间复杂度【详解】(二)
|
7月前
|
机器学习/深度学习 存储 算法
数据结构 | 算法的时间复杂度和空间复杂度【详解】(一)
什么是数据结构? 数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
|
6月前
|
存储 算法 C语言
数据结构中的空间复杂度
优化空间复杂度对于提升程序性能和资源利用率至关重要,特别是在资源受限的环境(如嵌入式系统和移动设备)中。高效的数据结构和算法设计可以显著提升程序的执行效率和可扩展性。 综上所述,理解和优化空间复杂度是设计高效数据结构和算法的关键。通过分析常见数据结构的空间复杂度,并结合实际代码示例,我们可以更好地理解这一重要概念,并在实际编程中应用这些知识。希望本文能帮助你更好地掌握空间复杂度及其在数据结构中的应用。
49 2
|
2月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
|
2月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
17 0
|
7月前
|
机器学习/深度学习 算法 存储
[数据结构]——算法的时间复杂度和空间复杂度
[数据结构]——算法的时间复杂度和空间复杂度
|
4月前
|
存储 算法
【数据结构】——时间复杂度与空间复杂度
【数据结构】——时间复杂度与空间复杂度
|
6月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题