深度学习框架Tensorflow模型分析

简介: 深度学习框架Tensorflow模型分析

1 快速入门模型

机器学习鸢尾花数据集分析:https://blog.csdn.net/ZGL_cyy/article/details/126924746

机器学习k近邻算法鸢尾花种类预测:https://blog.csdn.net/ZGL_cyy/article/details/126966990


我们通过鸢尾花分类案例,来给大家介绍tf.keras的基本使用流程。tf.keras使用tensorflow中的高级接口,我们调用它即可完成:

  1. 导入和解析数据集
  2. 构建模型
  3. 使用样本数据训练该模型
  4. 评估模型的效果。

由于与scikit -learn的相似性,接下来我们将通过将Keras与scikit -learn进行比较,介绍tf.Keras的相关使用方法。

2 相关的库的导入

在这里使用sklearn和tf.keras完成鸢尾花分类,导入相关的工具包:

# 绘图
import seaborn as sns
# 数值计算
import numpy as np
# sklearn中的相关工具
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
# 逻辑回归
from sklearn.linear_model import LogisticRegressionCV
# tf.keras中使用的相关工具
# 用于模型搭建
from tensorflow.keras.models import Sequential
# 构建模型的层和激活方法
from tensorflow.keras.layers import Dense, Activation
# 数据处理的辅助工具
from tensorflow.keras import utils

3 数据展示和划分

利用seborn导入相关的数据,iris数据以dataFrame的方式在seaborn进行存储,我们读取后并进行展示:

# 读取数据
iris = sns.load_dataset("iris")
# 展示数据的前五行
iris.head()

另外,利用seaborn中pairplot函数探索数据特征间的关系:

# 将数据之间的关系进行可视化
sns.pairplot(iris, hue='species')

将数据划分为训练集和测试集:从iris dataframe中提取原始数据,将花瓣和萼片数据保存在数组X中,标签保存在相应的数组y中:

# 花瓣和花萼的数据
X = iris.values[:, :4]
# 标签值
y = iris.values[:, 4]

利用train_test_split完成数据集划分:

# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, test_size=0.5, random_state=0)

接下来,我们就可以使用sklearn和tf.keras来完成预测

4 sklearn实现

利用逻辑回归的分类器,并使用交叉验证的方法来选择最优的超参数,实例化LogisticRegressionCV分类器,并使用fit方法进行训练:

# 实例化分类器
lr = LogisticRegressionCV()
# 训练
lr.fit(train_X, train_y)

利用训练好的分类器进行预测,并计算准确率:

# 计算准确率并进行打印
print("Accuracy = {:.2f}".format(lr.score(test_X, test_y)))

逻辑回归的准确率为:

Accuracy = 0.93

5 tf.keras实现

在sklearn中我们只要实例化分类器并利用fit方法进行训练,最后衡量它的性能就可以了,那在tf.keras中与在sklearn非常相似,不同的是:

  • 构建分类器时需要进行模型搭建
  • 数据采集时,sklearn可以接收字符串型的标签,如:“setosa”,但是在tf.keras中需要对标签值进行热编码,如下所示:

有很多方法可以实现热编码,比如pandas中的get_dummies(),在这里我们使用tf.keras中的方法进行热编码:

# 进行热编码
def one_hot_encode_object_array(arr):
    # 去重获取全部的类别
    uniques, ids = np.unique(arr, return_inverse=True)
    # 返回热编码的结果
    return utils.to_categorical(ids, len(uniques))

接下来对标签值进行热编码:

# 训练集热编码
train_y_ohe = one_hot_encode_object_array(train_y)
# 测试集热编码
test_y_ohe = one_hot_encode_object_array(test_y)

在sklearn中,模型都是现成的。tf.Keras是一个神经网络库,我们需要根据数据和标签值构建神经网络。神经网络可以发现特征与标签之间的复杂关系。神经网络是一个高度结构化的图,其中包含一个或多个隐藏层。每个隐藏层都包含一个或多个神经元。神经网络有多种类别,该程序使用的是密集型神经网络,也称为全连接神经网络:一个层中的神经元将从上一层中的每个神经元获取输入连接。例如,图 2 显示了一个密集型神经网络,其中包含 1 个输入层、2 个隐藏层以及 1 个输出层,如下图所示:


140ece0bb7554c2db917fb66ca5e0b2c.png


上图 中的模型经过训练并馈送未标记的样本时,它会产生 3 个预测结果:相应鸢尾花属于指定品种的可能性。对于该示例,输出预测结果的总和是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。


TensorFlow tf.keras API 是创建模型和层的首选方式。通过该 API,您可以轻松地构建模型并进行实验,而将所有部分连接在一起的复杂工作则由 Keras 处理。


tf.keras.Sequential 模型是层的线性堆叠。该模型的构造函数会采用一系列层实例;在本示例中,采用的是 2 个密集层(分别包含 10 个节点)以及 1 个输出层(包含 3 个代表标签预测的节点)。第一个层的 input_shape 参数对应该数据集中的特征数量:

# 利用sequential方式构建模型
model = Sequential([
  # 隐藏层1,激活函数是relu,输入大小有input_shape指定
  Dense(10, activation="relu", input_shape=(4,)),  
  # 隐藏层2,激活函数是relu
  Dense(10, activation="relu"),
  # 输出层
  Dense(3,activation="softmax")
])

通过model.summary可以查看模型的架构:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 10)                50        
_________________________________________________________________
dense_1 (Dense)              (None, 10)                110       
_________________________________________________________________
dense_2 (Dense)              (None, 3)                 33        
=================================================================
Total params: 193
Trainable params: 193
Non-trainable params: 0
_________________________________________________________________             

激活函数可决定层中每个节点的输出形状。这些非线性关系很重要,如果没有它们,模型将等同于单个层。激活函数有很多,但隐藏层通常使用 ReLU。


隐藏层和神经元的理想数量取决于问题和数据集。与机器学习的多个方面一样,选择最佳的神经网络形状需要一定的知识水平和实验基础。一般来说,增加隐藏层和神经元的数量通常会产生更强大的模型,而这需要更多数据才能有效地进行训练。


在训练和评估阶段,我们都需要计算模型的损失。这样可以衡量模型的预测结果与预期标签有多大偏差,也就是说,模型的效果有多差。我们希望尽可能减小或优化这个值,所以我们设置优化策略和损失函数,以及模型精度的计算方法:

# 设置模型的相关参数:优化器,损失函数和评价指标
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])

接下来与在sklearn中相同,分别调用fit和predict方法进行预测即可。

# 模型训练:epochs,训练样本送入到网络中的次数,batch_size:每次训练的送入到网络中的样本个数
model.fit(train_X, train_y_ohe, epochs=10, batch_size=1, verbose=1);

上述代码完成的是:


  1. 迭代每个epoch。通过一次数据集即为一个epoch。
  2. 在一个epoch中,遍历训练 Dataset 中的每个样本,并获取样本的特征 (x) 和标签 (y)。
  3. 根据样本的特征进行预测,并比较预测结果和标签。衡量预测结果的不准确性,并使用所得的值计算模型的损失和梯度。
  4. 使用 optimizer 更新模型的变量。
  5. 对每个epoch重复执行以上步骤,直到模型训练完成。
  6. 训练过程展示如下:
Epoch 1/10
75/75 [==============================] - 0s 616us/step - loss: 0.0585 - accuracy: 0.9733
Epoch 2/10
75/75 [==============================] - 0s 535us/step - loss: 0.0541 - accuracy: 0.9867
Epoch 3/10
75/75 [==============================] - 0s 545us/step - loss: 0.0650 - accuracy: 0.9733
Epoch 4/10
75/75 [==============================] - 0s 542us/step - loss: 0.0865 - accuracy: 0.9733
Epoch 5/10
75/75 [==============================] - 0s 510us/step - loss: 0.0607 - accuracy: 0.9733
Epoch 6/10
75/75 [==============================] - 0s 659us/step - loss: 0.0735 - accuracy: 0.9733
Epoch 7/10
75/75 [==============================] - 0s 497us/step - loss: 0.0691 - accuracy: 0.9600
Epoch 8/10
75/75 [==============================] - 0s 497us/step - loss: 0.0724 - accuracy: 0.9733
Epoch 9/10
75/75 [==============================] - 0s 493us/step - loss: 0.0645 - accuracy: 0.9600
Epoch 10/10
75/75 [==============================] - 0s 482us/step - loss: 0.0660 - accuracy: 0.9867

与sklearn中不同,对训练好的模型进行评估时,与sklearn.score方法对应的是tf.keras.evaluate()方法,返回的是损失函数和在compile模型时要求的指标:

# 计算模型的损失和准确率
loss, accuracy = model.evaluate(test_X, test_y_ohe, verbose=1)
print("Accuracy = {:.2f}".format(accuracy))

分类器的准确率为:

3/3 [==============================] - 0s 591us/step - loss: 0.1031 - accuracy: 0.9733
Accuracy = 0.97

6 总结

  1. 使用tf.keras进行分类时的主要流程:数据处理-构建模型-模型训练-模型验证
  2. tf.keras中构建模型可通过squential()来实现并利用.fit()方法进行训练
  3. 使用evaluate()方法计算损失函数和准确率
目录
相关文章
|
1天前
|
机器学习/深度学习 文字识别 自然语言处理
分析对比大模型OCR、传统OCR和深度学习OCR
OCR技术近年来迅速普及,广泛应用于文件扫描、快递单号识别、车牌识别及日常翻译等场景,极大提升了便利性。其发展历程从传统方法(基于模板匹配和手工特征设计)到深度学习(采用CNN、LSTM等自动学习高级语义特征),再到大模型OCR(基于Transformer架构,支持跨场景泛化和少样本学习)。每种技术在特定场景下各有优劣:传统OCR适合实时场景,深度学习OCR精度高但依赖大量数据,大模型OCR泛化能力强但训练成本高。未来,大模型OCR将结合多模态预训练,向通用文字理解方向发展,与深度学习OCR形成互补生态,最大化平衡成本与性能。
|
1天前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
1天前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
390 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
195 73
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
98 21
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
84 2
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
351 5