机器学习决策树算法cart剪枝

简介: 机器学习决策树算法cart剪枝

1 为什么要剪枝

决策树学习中,为了尽可能正确分类训练样本,结点划分过程将不断重复,有时会造成决策树分支过多,这时就可能因训练样本学得"太好"了,以致于把训练集自身的一些特点当作所有数据都具有的一般性质而导致过拟合。因此,可通过主动去掉一些分支来降低过拟合的风险

图形描述

  • 横轴表示在决策树创建过程中树的结点总数,纵轴表示决策树的预测精度。
  • 实线显示的是决策树在训练集上的精度,虚线显示的则是在一个独立的测试集上测量出来的精度。
  • 随着树的增长,在训练样集上的精度是单调上升的, 然而在独立的测试样例上测出的精度先上升后下降。
  • 出现这种情况的原因:
  • 原因1:噪声、样本冲突,即错误的样本数据。
  • 原因2:特征即属性不能完全作为分类标准。
  • 原因3:巧合的规律性,数据量不够大。

剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段

如何判断决策树泛化性能是否提升呢?

  • 可使用前面介绍的留出法,即预留一部分数据用作"验证集"以进行性 能评估。例如对下表的西瓜数据集,我们将其随机划分为两部分,其中编号为 {1,2,3,6, 7, 10, 14, 15, 16, 17} 的样例组成训练集,编号为 {4, 5, 8, 9, 11, 12, 13} 的样例组成验证集。

假定咱们采用信息增益准则来划分属性选择,则上表中训练集将会生成一棵下面决策树。

为便于讨论,我们对圈中的部分结点做了编号。

接下来,我们一起看一下,如何对这一棵树进行剪枝。

2 常用的减枝方法

决策树剪枝的基本策略有"预剪枝" (pre-pruning)和"后剪枝"(post- pruning) 。

  • 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点;
  • 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。

2.1 预剪枝

首先,基于信息增益准则,我们会选取属性"脐部"来对训练集进行划分,并产生 3 个分支,如下图所示。然而,是否应该进行这个划分呢?预剪枝要对划分前后的泛化性能进行估计。

在划分之前,所有样例集中在根结点。

  • 若不进行划分,该结点将被标记为叶结点,其类别标记为训练样例数最多的类别,假设我们将这个叶结点标记为"好瓜"。
  • 用前面表的验证集对这个单结点决策树进行评估。则编号为 {4,5,8} 的样例被分类正确。另外 4个样例分类错误,于是验证集精度为\frac{3}{7}*100% = 42.9%73∗100%=42.9%。

在用属性"脐部"划分之后,上图中的结点2、3、4分别包含编号为 {1,2,3, 14}、 {6,7, 15, 17}、 {10, 16} 的训练样例,因此这 3 个结点分别被标记为叶结点"好瓜"、 “好瓜”、 “坏瓜”。

此时,验证集中编号为 {4, 5, 8,11, 12} 的样例被分类正确,验证集精度为\frac{5}{7}*100% = 71.4% > 42.9%75∗100%=71.4%>42.9%.

于是,用"脐部"进行划分得以确定。

然后,决策树算法应该对结点2进行划分,基于信息增益准则将挑选出划分属性"色泽"。然而,在使用"色泽"划分后,编号为 {5} 的验证集样本分类结果会由正确转为错误,使得验证集精度下降为 57.1%。于是,预剪枝策略将禁 止结点2被划分。

对结点3,最优划分属性为"根蒂",划分后验证集精度仍为 71.4%. 这个 划分不能提升验证集精度,于是,预剪枝策略禁止结点3被划分。

对结点4,其所含训练样例己属于同一类,不再进行划分.

于是,基于预剪枝策略从上表数据所生成的决策树如上图所示,其验证集精度为 71.4%. 这是一棵仅有一层划分的决策树,亦称"决策树桩" (decision stump).

2.2 后剪枝

后剪枝先从训练集生成一棵完整决策树,继续使用上面的案例,从前面计算,我们知前面构造的决策树的验证集精度为42.9%。

后剪枝首先考察结点6,若将其领衔的分支剪除则相当于把6替换为叶结点。替换后的叶结点包含编号为 {7, 15} 的训练样本,于是该叶结点的类别标记为"好瓜",此时决策树的验证集精度提高至 57.1%。于是,后剪枝策略决定剪枝,如下图所示。

然后考察结点5,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号为 {6,7,15}的训练样例,叶结点类别标记为"好瓜’;此时决策树验证集精度仍为 57.1%. 于是,可以不进行剪枝.

对结点2,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号 为 {1, 2, 3, 14} 的训练样例,叶结点标记为"好瓜"此时决策树的验证集精度提高至 71.4%. 于是,后剪枝策略决定剪枝.

对结点3和1,若将其领衔的子树替换为叶结点,则所得决策树的验证集 精度分别为 71.4% 与 42.9%,均未得到提高,于是它们被保留。

最终,基于后剪枝策略所生成的决策树就如上图所示,其验证集精度为 71.4%。

对比两种剪枝方法,

  • 后剪枝决策树通常比预剪枝决策树保留了更多的分支。
  • 一般情形下,后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
  • 但后剪枝过程是在生成完全决策树之后进行的。 并且要自底向上地对树中的所有非叶结点进行逐一考察,因此其训练时间开销比未剪枝决策树和预剪枝决策树都要大得多.

3 小结

  • 剪枝原因【了解】
  • 噪声、样本冲突,即错误的样本数据
  • 特征即属性不能完全作为分类标准
  • 巧合的规律性,数据量不够大。
  • 常用剪枝方法【知道】
  • 预剪枝

在构建树的过程中,同时剪枝

  • 限制节点最小样本数
  • 指定数据高度
  • 指定熵值的最小值
  • 后剪枝
  • 把一棵树,构建完成之后,再进行从下往上的剪枝


目录
相关文章
|
12天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
5月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
6月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
262 6
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
8月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
163 0
|
16天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
76 2
|
29天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
146 3
|
6天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
|
6天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)

热门文章

最新文章