机器学习决策树算法cart剪枝

简介: 机器学习决策树算法cart剪枝

1 为什么要剪枝

决策树学习中,为了尽可能正确分类训练样本,结点划分过程将不断重复,有时会造成决策树分支过多,这时就可能因训练样本学得"太好"了,以致于把训练集自身的一些特点当作所有数据都具有的一般性质而导致过拟合。因此,可通过主动去掉一些分支来降低过拟合的风险

图形描述

  • 横轴表示在决策树创建过程中树的结点总数,纵轴表示决策树的预测精度。
  • 实线显示的是决策树在训练集上的精度,虚线显示的则是在一个独立的测试集上测量出来的精度。
  • 随着树的增长,在训练样集上的精度是单调上升的, 然而在独立的测试样例上测出的精度先上升后下降。
  • 出现这种情况的原因:
  • 原因1:噪声、样本冲突,即错误的样本数据。
  • 原因2:特征即属性不能完全作为分类标准。
  • 原因3:巧合的规律性,数据量不够大。

剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段

如何判断决策树泛化性能是否提升呢?

  • 可使用前面介绍的留出法,即预留一部分数据用作"验证集"以进行性 能评估。例如对下表的西瓜数据集,我们将其随机划分为两部分,其中编号为 {1,2,3,6, 7, 10, 14, 15, 16, 17} 的样例组成训练集,编号为 {4, 5, 8, 9, 11, 12, 13} 的样例组成验证集。

假定咱们采用信息增益准则来划分属性选择,则上表中训练集将会生成一棵下面决策树。

为便于讨论,我们对圈中的部分结点做了编号。

接下来,我们一起看一下,如何对这一棵树进行剪枝。

2 常用的减枝方法

决策树剪枝的基本策略有"预剪枝" (pre-pruning)和"后剪枝"(post- pruning) 。

  • 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点;
  • 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。

2.1 预剪枝

首先,基于信息增益准则,我们会选取属性"脐部"来对训练集进行划分,并产生 3 个分支,如下图所示。然而,是否应该进行这个划分呢?预剪枝要对划分前后的泛化性能进行估计。

在划分之前,所有样例集中在根结点。

  • 若不进行划分,该结点将被标记为叶结点,其类别标记为训练样例数最多的类别,假设我们将这个叶结点标记为"好瓜"。
  • 用前面表的验证集对这个单结点决策树进行评估。则编号为 {4,5,8} 的样例被分类正确。另外 4个样例分类错误,于是验证集精度为\frac{3}{7}*100% = 42.9%73∗100%=42.9%。

在用属性"脐部"划分之后,上图中的结点2、3、4分别包含编号为 {1,2,3, 14}、 {6,7, 15, 17}、 {10, 16} 的训练样例,因此这 3 个结点分别被标记为叶结点"好瓜"、 “好瓜”、 “坏瓜”。

此时,验证集中编号为 {4, 5, 8,11, 12} 的样例被分类正确,验证集精度为\frac{5}{7}*100% = 71.4% > 42.9%75∗100%=71.4%>42.9%.

于是,用"脐部"进行划分得以确定。

然后,决策树算法应该对结点2进行划分,基于信息增益准则将挑选出划分属性"色泽"。然而,在使用"色泽"划分后,编号为 {5} 的验证集样本分类结果会由正确转为错误,使得验证集精度下降为 57.1%。于是,预剪枝策略将禁 止结点2被划分。

对结点3,最优划分属性为"根蒂",划分后验证集精度仍为 71.4%. 这个 划分不能提升验证集精度,于是,预剪枝策略禁止结点3被划分。

对结点4,其所含训练样例己属于同一类,不再进行划分.

于是,基于预剪枝策略从上表数据所生成的决策树如上图所示,其验证集精度为 71.4%. 这是一棵仅有一层划分的决策树,亦称"决策树桩" (decision stump).

2.2 后剪枝

后剪枝先从训练集生成一棵完整决策树,继续使用上面的案例,从前面计算,我们知前面构造的决策树的验证集精度为42.9%。

后剪枝首先考察结点6,若将其领衔的分支剪除则相当于把6替换为叶结点。替换后的叶结点包含编号为 {7, 15} 的训练样本,于是该叶结点的类别标记为"好瓜",此时决策树的验证集精度提高至 57.1%。于是,后剪枝策略决定剪枝,如下图所示。

然后考察结点5,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号为 {6,7,15}的训练样例,叶结点类别标记为"好瓜’;此时决策树验证集精度仍为 57.1%. 于是,可以不进行剪枝.

对结点2,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号 为 {1, 2, 3, 14} 的训练样例,叶结点标记为"好瓜"此时决策树的验证集精度提高至 71.4%. 于是,后剪枝策略决定剪枝.

对结点3和1,若将其领衔的子树替换为叶结点,则所得决策树的验证集 精度分别为 71.4% 与 42.9%,均未得到提高,于是它们被保留。

最终,基于后剪枝策略所生成的决策树就如上图所示,其验证集精度为 71.4%。

对比两种剪枝方法,

  • 后剪枝决策树通常比预剪枝决策树保留了更多的分支。
  • 一般情形下,后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
  • 但后剪枝过程是在生成完全决策树之后进行的。 并且要自底向上地对树中的所有非叶结点进行逐一考察,因此其训练时间开销比未剪枝决策树和预剪枝决策树都要大得多.

3 小结

  • 剪枝原因【了解】
  • 噪声、样本冲突,即错误的样本数据
  • 特征即属性不能完全作为分类标准
  • 巧合的规律性,数据量不够大。
  • 常用剪枝方法【知道】
  • 预剪枝

在构建树的过程中,同时剪枝

  • 限制节点最小样本数
  • 指定数据高度
  • 指定熵值的最小值
  • 后剪枝
  • 把一棵树,构建完成之后,再进行从下往上的剪枝


目录
相关文章
|
29天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
96 4
|
5天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
61 15
|
8天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
26天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
43 1
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
116 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
92 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
41 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。