机器学习正则化线性模型和模型保存

简介: 机器学习正则化线性模型和模型保存

1 正则化线性模型

1.1 岭回归

岭回归(Ridge Regression ,又名 Tikhonov regularization)是线性回归的正则化版本,即在原来的线性回归的 cost function 中添加正则项(regularization term):

以达到在拟合数据的同时,使模型权重尽可能小的目的,岭回归代价函数:

  • α=0:岭回归退化为线性回归

1.2 Lasso 回归

Lasso 回归(Lasso Regression)是线性回归的另一种正则化版本,正则项为权值向量的ℓ1范数。

Lasso回归的代价函数 :

【注意 】

  • Lasso Regression 的代价函数在 θi=0处是不可导的.
  • 解决方法:在θi=0处用一个次梯度向量(subgradient vector)代替梯度,如下式
  • Lasso Regression 的次梯度向量

Lasso Regression 有一个很重要的性质是:倾向于完全消除不重要的权重。

例如:当α 取值相对较大时,高阶多项式退化为二次甚至是线性:高阶多项式特征的权重被置为0。

也就是说,Lasso Regression 能够自动进行特征选择,并输出一个稀疏模型(只有少数特征的权重是非零的)。

1.3 弹性网络

弹性网络(Elastic Net)在岭回归和Lasso回归中进行了折中,通过 混合比(mix ratio) r 进行控制:

  • r=0:弹性网络变为岭回归
  • r=1:弹性网络便为Lasso回归

弹性网络的代价函数 :

一般来说,我们应避免使用朴素线性回归,而应对模型进行一定的正则化处理,那如何选择正则化方法呢?


小结:

  • 常用:岭回归
  • 假设只有少部分特征是有用的:
  • 弹性网络
  • Lasso
  • 一般来说,弹性网络的使用更为广泛。因为在特征维度高于训练样本数,或者特征是强相关的情况下,Lasso回归的表现不太稳定。
  • api:
from sklearn.linear_model import Ridge, ElasticNet, Lasso

1.4 Early Stopping

Early Stopping 也是正则化迭代学习的方法之一。

其做法为:在验证错误率达到最小值的时候停止训练。

1.5 小结

  • Ridge Regression 岭回归
  • 就是把系数添加平方项
  • 然后限制系数值的大小
  • α值越小,系数值越大,α越大,系数值越小
  • Lasso 回归
  • 对系数值进行绝对值处理
  • 由于绝对值在顶点处不可导,所以进行计算的过程中产生很多0,最后得到结果为:稀疏矩阵
  • Elastic Net 弹性网络
  • 是前两个内容的综合
  • 设置了一个r,如果r=0–岭回归;r=1–Lasso回归
  • Early stopping
  • 通过限制错误率的阈值,进行停止

2 线性回归的改进-岭回归

2.1 API

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)
  • 具有l2正则化的线性回归
  • alpha:正则化力度,也叫 λ
  • solver:会根据数据自动选择优化方法
  • sag:如果数据集、特征都比较大,选择该随机梯度下降优化(SAG)
  • normalize:数据是否进行标准化
  • normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
  • Ridge.coef_:回归权重
  • Ridge.intercept_:回归偏置

Ridge方法相当于SGDRegressor(penalty=‘l2’, loss=“squared_loss”),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)

  • sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
  • 具有l2正则化的线性回归,可以进行交叉验证
  • coef_:回归系数
class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False,scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):

2.2 正则化程度变化

观察正则化程度的变化,对结果的影响?

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

2.3 波士顿房价预测

def linear_model3():
    """
    线性回归:岭回归
    :return:
    """
    # 1.获取数据
    data = load_boston()
    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)
    # 4.机器学习-线性回归(岭回归)
    estimator = Ridge(alpha=1)
    # estimator = RidgeCV(alphas=(0.1, 1, 10))
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)
    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)

2.4 小结

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)【知道】
  • 具有l2正则化的线性回归
  • alpha – 正则化
  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大
  • normalize
  • 默认封装了,对数据进行标准化处理

3 模型的保存和加载

3.1 sklearn模型的保存和加载API

  • from sklearn.externals import joblib
  • 保存:joblib.dump(estimator, ‘test.pkl’)
  • 加载:estimator = joblib.load(‘test.pkl’)

3.2 线性回归的模型保存加载案例

def load_dump_demo():
    """
    模型保存和加载
    :return:
    """
    # 1.获取数据
    data = load_boston()
    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)
    # 4.机器学习-线性回归(岭回归)
    # # 4.1 模型训练
    # estimator = Ridge(alpha=1)
    # estimator.fit(x_train, y_train)
    #
    # # 4.2 模型保存
    # joblib.dump(estimator, "./data/test.pkl")
    # 4.3 模型加载
    estimator = joblib.load("./data/test.pkl")
    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)
    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)

3.3 tips

如果你在学习过程中,发现使用上面方法报如下错误:

ImportError: cannot import name 'joblib' from 'sklearn.externals' (/Library/Python/3.7/site-packages/sklearn/externals/__init__.py)

这是因为scikit-learn版本在0.21之后,无法使用from sklearn.externals import joblib进行导入,你安装的scikit-learn版本有可能是最新版本。如果需要保存模块,可以使用:

# 安装
pip install joblib
# 导入
import joblib

安装joblib,然后使用joblib.load进行加载;使用joblib.dump进行保存

参考:https://scikit-learn.org/stable/modules/model_persistence.html

3.4 小结

  • sklearn.externals import joblib【知道】
  • 保存:joblib.dump(estimator, ‘test.pkl’)
  • 加载:estimator = joblib.load(‘test.pkl’)
  • 注意:
  • 1.保存文件,后缀名是**.pkl
  • 2.加载模型是需要通过一个变量进行承接
目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
86 2
|
1月前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
86 3
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI ×LLaMA Factory 框架,基于全参方法微调 Qwen2-VL 模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
10天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
23 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
32 1
|
1月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
54 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
20天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
58 1
|
23天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?