Codeforces Round #742 (Div. 2)

简介: Codeforces Round #742 (Div. 2)

B. MEXor Mixup

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output


Alice gave Bob two integers aa and bb (a>0a>0 and b≥0b≥0). Being a curious boy, Bob wrote down an array of non-negative integers with MEXMEX value of all elements equal to aa and XORXOR value of all elements equal to bb.


What is the shortest possible length of the array Bob wrote?


Recall that the MEXMEX (Minimum EXcluded) of an array is the minimum non-negative integer that does not belong to the array and the XORXOR of an array is the bitwise XOR of all the elements of the array.


Input


The input consists of multiple test cases. The first line contains an integer tt (1≤t≤5⋅1041≤t≤5⋅104) — the number of test cases. The description of the test cases follows.


The only line of each test case contains two integers aa and bb (1≤a≤3⋅1051≤a≤3⋅105; 0≤b≤3⋅1050≤b≤3⋅105) — the MEXMEX and XORXOR of the array, respectively.


Output


For each test case, output one (positive) integer — the length of the shortest array with MEXMEX aa and XORXOR bb. We can show that such an array always exists.


Example


input


Copy

5

1 1

2 1

2 0

1 10000

2 10000


output


Copy

3

2

3

2

3


Note

In the first test case, one of the shortest arrays with MEXMEX 11 and XORXOR 11 is [0,2020,2021][0,2020,2021].


In the second test case, one of the shortest arrays with MEXMEX 22 and XORXOR 11 is [0,1][0,1].

It can be shown that these arrays are the shortest arrays possible.


直接贴代码,分类讨论就行了、


#include <bits/stdc++.h>
using namespace std;
#define ll long long
 signed  main() {
  ll t;
  cin >> t;
  int g[300001];
  for (int i = 1; i <= 300000; i++) {
    g[i] = g[i - 1] ^ i;
  }
  while (t--) {
    ll n, m;
    cin >> n;
    cin >> m;
    ll ans = n;
    if (g[n - 1] == m) {
      printf("%lld\n", ans);
      continue;
    } else {
      if (m == 0 && g[n - 1] != n) {
        printf("%lld\n", ans + 1);
        continue;
      }
      if ((g[n - 1]^n) == m) {
        printf("%lld\n", ans + 2);
      }
      else {
        printf("%lld\n", ans + 1);
      }
    }
  }
}
目录
打赏
0
0
0
0
8
分享
相关文章
Codeforces Round #179 (Div. 2)A、B、C、D
我们每次加进来的点相当于k,首先需要进行一个双重循环找到k点和所有点之间的最短路径;然后就以k点位判断节点更新之前的k-1个点,时间复杂度降到O(n^3),而暴力解法每次都要进行floyd,时间复杂度为O(n^4);相比之下前述解法考虑到了floyd算法的性质,更好了运用了算法的内质。
71 0
Codeforces Round #192 (Div. 2) (330A) A. Cakeminator
如果某一行没有草莓,就可以吃掉这一行,某一列没有也可以吃点这一列,求最多会被吃掉多少块蛋糕。
65 0
Codeforces Round #786 (Div. 3)(A-D)
Codeforces Round #786 (Div. 3)(A-D)
134 0
Codeforces Round 827 (Div. 4)
Codeforces Round 827 (Div. 4)A~G题解
153 0
Codeforces Round #640 (Div. 4)
Codeforces Round #640 (Div. 4)
103 0
下一篇
oss创建bucket