Java线程常用定时任务算法与应用

简介: Java线程常用定时任务算法与应用

1 最小堆

系统或者项目中难免会遇到各种需要自动去执行的任务,实现这些任务的手段也多种多样,如操作系统的crontab,spring框架的quartz,java的Timer和ScheduledThreadPool都是定时任务中的典型手段。


1.1 概述

Timer是java中最典型的基于优先级队列+最小堆实现的定时器,内部维护一个存放定时任务的优先级队列,该优先级队列使用了最小堆排序。当我们调用schedule方法的时候,一个新的任务被加入queue,堆重排,始终保持堆顶是执行时间最小(即最近马上要执行)的。同时,内部相当于起了一个线程不断扫描队列,从队列中依次获取堆顶元素执行,任务得到调度。

下面以Timer为例,介绍优先级队列+最小堆算法的实现原理:


1.2 案例

package com.oldlu.timer;
import java.util.Timer;
import java.util.TimerTask;
class Task extends TimerTask {
    @Override
    public void run() {
        System.out.println("running...");
    }
}
public class TimerDemo {
    public static void main(String[] args) {
        Timer t=new Timer();
        //在1秒后执行,以后每2秒跑一次
        t.schedule(new Task(), 1000,2000);
    }
}

1.3 源码分析

新加任务时,t.schedule方法会add到队列

void add(TimerTask task) {
    // Grow backing store if necessary
    if (size + 1 == queue.length)
        queue = Arrays.copyOf(queue, 2*queue.length);
    queue[++size] = task;
    fixUp(size);
}

add实现了容量维护,不足时扩容,同时将新任务追加到队列队尾,触发堆排序,始终保持堆顶元素最小

//最小堆排序
private void fixUp(int k) {
    while (k > 1) {
        //k指针指向当前新加入的节点,也就是队列的末尾节点,j为其父节点
        int j = k >> 1;
        //如果新加入的执行时间比父节点晚,那不需要动
        if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
            break;
        //如果大于其父节点,父子交换
        TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
        //交换后,当前指针继续指向新加入的节点,继续循环,知道堆重排合格
        k = j;
    }
}

线程调度中的run,主要调用内部mainLoop()方法,使用while循环

private void mainLoop() {
    while (true) {
        try {
            TimerTask task;
            boolean taskFired;
            synchronized(queue) {
                //...
                // Queue nonempty; look at first evt and do the right thing
                long currentTime, executionTime;
                task = queue.getMin();
                synchronized(task.lock) {
//...                    
                    //当前时间
                    currentTime = System.currentTimeMillis();
                    //要执行的时间
                    executionTime = task.nextExecutionTime;
                    //判断是否到了执行时间
                    if (taskFired = (executionTime<=currentTime)) {
                        //判断下一次执行时间,单次的执行完移除
                        //循环的修改下次执行时间
                        if (task.period == 0) { // Non‐repeating, remove
                            queue.removeMin();
                            task.state = TimerTask.EXECUTED;
                        } else { // Repeating task, reschedule
                            //下次时间的计算有两种策略
                            //1.period是负数,那下一次的执行时间就是当前时间‐period
//2.period是正数,那下一次就是该任务本次的执行时间+period                            
                            //注意!这两种策略大不相同。因为Timer是单线程的
                            //如果是1,那么currentTime是当前时间,就受任务执行长短影响
                            //如果是2,那么executionTime是绝对时间戳,与任务长短无关
                            queue.rescheduleMin(
                              task.period<0 ? currentTime ‐ task.period
                                            : executionTime + task.period);
                        }
                    }
                }
                //不到执行时间,等待
                if (!taskFired) // Task hasn't yet fired; wait
                    queue.wait(executionTime ‐ currentTime);
            }
            //到达执行时间,run!
            if (taskFired)  // Task fired; run it, holding no locks
                task.run();
        } catch(InterruptedException e) {
        }
    }
}

1.4 应用

本节使用Timer为了介绍算法原理,但是Timer已过时,实际应用中推荐使用

ScheduledThreadPoolExecutor(同样内部使用DelayedWorkQueue和最小堆排序)

Timer是单线程,一旦一个失败或出现异常,将打断全部任务队列,线程池不会

Timer在jdk1.3+,而线程池需要jdk1.5+


2 时间轮

2.1 概述

时间轮是一种更为常见的定时调度算法,各种操作系统的定时任务调度,linux crontab,基于java的通信框架

Netty等。其灵感来源于我们生活中的时钟。

轮盘实际上是一个头尾相接的环状数组,数组的个数即是插槽数,每个插槽中可以放置任务。

以1天为例,将任务的执行时间%12,根据得到的数值,放置在时间轮上,小时指针沿着轮盘扫描,扫到的点取出

任务执行:

问题:比如3点钟,有多个任务执行怎么办?

答案:在每个槽上设置一个队列,队列可以无限追加,解决时间点冲突问题(类似HashMap结构)


问题:每个轮盘的时间有限,比如1个月后的第3天的5点怎么办?

方案一:加长时间刻度,扩充到1年

优缺点:简单,占据大量内存,即使插槽没有任务也要空轮询,白白的资源浪费,时间、空间复杂度都高

方案二:每个任务记录一个计数器,表示转多少圈后才会执行。没当指针过来后,计数器减1,减到0的再执行

优缺点:每到一个指针都需要取出链表遍历判断,时间复杂度高,但是空间复杂度低

方案三:设置多个时间轮,年轮,月轮,天轮。1天内的放入天轮,1年后的则放入年轮,当年轮指针读到后,将任

务取出,放入下一级的月轮对应的插槽,月轮再到天轮,直到最小精度取到,任务被执行。

优缺点:不需要额外的遍历时间,但是占据了多个轮的空间。空间复杂度升高,但是时间复杂度降低


2.2 java实现

定义Task类

package com.oldlu.timer;
public class RoundTask {
    //延迟多少秒后执行
    int delay;
    //加入的序列号,只是标记一下加入的顺序
    int index;
    public RoundTask(int index, int delay) {
        this.index = index;
        this.delay = delay;
    }
    void run() {
        System.out.println("task " + index + " start , delay = "+delay);
    }
    @Override
    public String toString() {
        return String.valueOf(index+"="+delay);
    }
}

时间轮算法:

package com.oldlu.timer;
import java.util.LinkedList;
import java.util.Random;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class RoundDemo {
    //小轮槽数
    int size1=10;
    //大轮槽数
    int size2=5;
    //小轮,数组,每个元素是一个链表
    LinkedList<RoundTask>[] t1 = new LinkedList[size1];
    //大轮
    LinkedList<RoundTask>[] t2 = new LinkedList[size2];
    //小轮计数器,指针跳动的格数,每秒加1
    final AtomicInteger flag1=new AtomicInteger(0);
    //大轮计数器,指针跳动个格数,即每10s加1
    final AtomicInteger flag2=new AtomicInteger(0);
    //调度器,拖动指针跳动
    ScheduledExecutorService service = Executors.newScheduledThreadPool(2);
    public RoundDemo(){
        //初始化时间轮
        for (int i = 0; i < size1; i++) {
            t1[i]=new LinkedList<>();
        }
        for (int i = 0; i < size2; i++) {
            t2[i]=new LinkedList<>();
        }
    }
    //打印时间轮的结构,数组+链表
    void print(){
        System.out.println("t1:");
        for (int i = 0; i < t1.length; i++) {
            System.out.println(t1[i]);
        }
        System.out.println("t2:");
        for (int i = 0; i < t2.length; i++) {
            System.out.println(t2[i]);
        }
    }
    //添加任务到时间轮
    void add(RoundTask task){
        int delay = task.delay;
        if (delay < size1){
            //10以内的,在小轮
            t1[delay].addLast(task);
 }else {
            //超过小轮的放入大轮,槽除以小轮的长度
            t2[delay/size1].addLast(task);
        }
    }
    void startT1(){
        //每秒执行一次,推动时间轮旋转,取到任务立马执行
        service.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                int point = flag1.getAndIncrement()%size1;
                System.out.println("t1 ‐‐‐‐‐> slot "+point);
                LinkedList<RoundTask> list = t1[point];
                if (!list.isEmpty()){
                    //如果当前槽内有任务,取出来,依次执行,执行完移除
                    while (list.size() != 0){
                        list.getFirst().run();
                        list.removeFirst();
                    }
                }
            }
        },0,1, TimeUnit.SECONDS);
    }
    void startT2(){
        //每10秒执行一次,推动时间轮旋转,取到任务下方到t1
        service.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                int point = flag2.getAndIncrement()%size2;
                System.out.println("t2 =====> slot "+point);
                LinkedList<RoundTask> list = t2[point];
                if (!list.isEmpty()){
                    //如果当前槽内有任务,取出,放到定义的小轮
                    while (list.size() != 0){
                        RoundTask task = list.getFirst();
                        //放入小轮哪个槽呢?小轮的槽按10取余数
                        t1[task.delay % size1].addLast(task);
                        //从大轮中移除
                        list.removeFirst();
                    }
                }
            }
        },0,10, TimeUnit.SECONDS);
    }
    public static void main(String[] args) {
        RoundDemo roundDemo = new RoundDemo();
        //生成100个任务,每个任务的延迟时间随机
        for (int i = 0; i < 100; i++) {
            roundDemo.add(new RoundTask(i,new Random().nextInt(50)));
        }
  //打印,查看时间轮任务布局
        roundDemo.print();
        //启动大轮
        roundDemo.startT2();
        //小轮启动
        roundDemo.startT1();
    }
}

2.3 结果分析

输出结果严格按delay顺序执行,而不管index是何时被提交的

t1为小轮,10个槽,每个1s,10s一轮回

t2为大轮,5个槽,每个10s,50s一轮回

t1循环到每个槽时,打印槽内的任务数据,如 t1–>slot9 , 打印了3个9s执行的数据

t2循环到每个槽时,将槽内的任务delay时间取余10后,放入对应的t1槽中,如 t2==>slot1

那么t1旋转对应的圈数后,可以取到t2下放过来的任务并执行,如10,11…

目录
相关文章
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
358 3
|
4月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
229 8
|
5月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
315 3
|
5月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
830 12
|
5月前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
5月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
5月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
5月前
|
安全 Java API
Java SE 与 Java EE 区别解析及应用场景对比
在Java编程世界中,Java SE(Java Standard Edition)和Java EE(Java Enterprise Edition)是两个重要的平台版本,它们各自有着独特的定位和应用场景。理解它们之间的差异,对于开发者选择合适的技术栈进行项目开发至关重要。
721 1
|
SQL 存储 Java
Java 应用与数据库的关系| 学习笔记
快速学习 Java 应用与数据库的关系。
329 0
Java 应用与数据库的关系| 学习笔记