最全的二叉树算法总结,30道题搞定大厂算法面试(二)

简介: 最全的二叉树算法总结,30道题搞定大厂算法面试

7. 统计路径和等于一个数的路径数量


437. Path Sum III (Easy)


Leetcode / 力扣


root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1
Return 3. The paths that sum to 8 are:
1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11


路径不一定以 root 开头,也不一定以 leaf 结尾,但是必须连续。


public int pathSum(TreeNode root, int sum) {
    if (root == null) return 0;
    int ret = pathSumStartWithRoot(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
    return ret;
}
private int pathSumStartWithRoot(TreeNode root, int sum) {
    if (root == null) return 0;
    int ret = 0;
    if (root.val == sum) ret++;
    ret += pathSumStartWithRoot(root.left, sum - root.val) + pathSumStartWithRoot(root.right, sum - root.val);
    return ret;
}


8. 子树


572. Subtree of Another Tree (Easy)


Leetcode / 力扣


Given tree s:
     3
    / \
   4   5
  / \
 1   2
Given tree t:
   4
  / \
 1   2
Return true, because t has the same structure and node values with a subtree of s.
Given tree s:
     3
    / \
   4   5
  / \
 1   2
    /
   0
Given tree t:
   4
  / \
 1   2
Return false.
public boolean isSubtree(TreeNode s, TreeNode t) {
    if (s == null) return false;
    return isSubtreeWithRoot(s, t) || isSubtree(s.left, t) || isSubtree(s.right, t);
}
private boolean isSubtreeWithRoot(TreeNode s, TreeNode t) {
    if (t == null && s == null) return true;
    if (t == null || s == null) return false;
    if (t.val != s.val) return false;
    return isSubtreeWithRoot(s.left, t.left) && isSubtreeWithRoot(s.right, t.right);
}


9. 树的对称


101. Symmetric Tree (Easy)


Leetcode / 力扣


2fb967f536f6d60c947bd94e3f9b4a2f_449606e2988ea8bcaf36665cdcb0670d.png


public boolean isSymmetric(TreeNode root) {
    if (root == null) return true;
    return isSymmetric(root.left, root.right);
}
private boolean isSymmetric(TreeNode t1, TreeNode t2) {
    if (t1 == null && t2 == null) return true;
    if (t1 == null || t2 == null) return false;
    if (t1.val != t2.val) return false;
    return isSymmetric(t1.left, t2.right) && isSymmetric(t1.right, t2.left);
}


10 求二叉树的镜像


531582f45b01c063cc6bc7620b30b8e1_2ae53584ae2daa4c89bf3a34dd0ef4c9.png


class Solution {
    public TreeNode invertTree(TreeNode root) {
        if(root == null)
            return root;
        // 先保存最节点,因为 invertTree 已经变化了
        TreeNode node = root.left;
        root.left = invertTree(root.right);
        root.right = invertTree(node);
        return root;
    }
}


11. 最小路径


111. Minimum Depth of Binary Tree (Easy)


Leetcode / 力扣


树的根节点到叶子节点的最小路径长度


public int minDepth(TreeNode root) {
    if (root == null) return 0;
    int left = minDepth(root.left);
    int right = minDepth(root.right);
    if (left == 0 || right == 0) return left + right + 1;
    return Math.min(left, right) + 1;
}


层次遍历


使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。


1. 二叉树的层序遍历


二叉树的层序遍历 II


给定二叉树,返回其节点值的自下而上级别顺序遍历。


class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> res = new LinkedList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        if(root == null)
            return res;
        queue.add(root);
        while(!queue.isEmpty()){
            int count = queue.size();
            List<Integer> temp = new LinkedList<>();
            for(int i=0; i<count; i++){
                TreeNode node = queue.poll();
                temp.add(node.val);
                if(node.left != null)
                    queue.add(node.left);
                if(node.right != null)
                    queue.add(node.right);
            }
            // 每次都添加到第一个位置
            res.add(0, temp);
        }
        return res;
    }
}


按之字形打印二叉树


剑指offer:按之字形顺序打印二叉树


请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推。


  • 设两个栈,s2存放奇数层,s1存放偶数层
  • 遍历s2节点的同时按照左子树、右子树的顺序加入s1,
  • 遍历s1节点的同时按照右子树、左子树的顺序加入s2


import java.util.ArrayList;
import java.util.Stack;
/*
public class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;
    public TreeNode(int val) {
        this.val = val;
    }
}
*/
public class Solution {
    public ArrayList<ArrayList<Integer> > Print(TreeNode pRoot) {
        ArrayList<ArrayList<Integer> > res = new ArrayList<ArrayList<Integer> >();
        Stack<TreeNode> s1 = new Stack<TreeNode>();
        Stack<TreeNode> s2 = new Stack<TreeNode>();
        int flag = 1;
        if(pRoot == null)
            return res;
        s2.push(pRoot);
        ArrayList<Integer> temp = new ArrayList<Integer>();
        while(!s1.isEmpty() || !s2.isEmpty()){
            if(flag % 2 != 0){
                while(!s2.isEmpty()){
                    TreeNode node = s2.pop();
                    temp.add(node.val);
                    if(node.left != null){
                        s1.push(node.left);
                    }
                    if(node.right != null){
                        s1.push(node.right);
                    }
                }
            }
            if(flag % 2 == 0){
                while(!s1.isEmpty()){
                    TreeNode node = s1.pop();
                    temp.add(node.val);
                    if(node.right != null){
                        s2.push(node.right);
                    }
                    if(node.left != null){
                        s2.push(node.left);
                    }
                }
            }
            res.add(new ArrayList<Integer>(temp));
            temp.clear();
            flag ++;
        }
        return res;
    }
}


前中后序遍历


1
   / \
  2   3
 / \   \
4   5   6


  • 层次遍历顺序:[1 2 3 4 5 6]
  • 前序遍历顺序:[1 2 4 5 3 6]
  • 中序遍历顺序:[4 2 5 1 3 6]
  • 后序遍历顺序:[4 5 2 6 3 1]


层次遍历使用 BFS 实现,利用的就是 BFS 一层一层遍历的特性;而前序、中序、后序遍历利用了 DFS 实现。


前序、中序、后序遍只是在对节点访问的顺序有一点不同,其它都相同。


① 前序


void dfs(TreeNode root) {
    visit(root);
    dfs(root.left);
    dfs(root.right);
}


② 中序


void dfs(TreeNode root) {
    dfs(root.left);
    visit(root);
    dfs(root.right);
}


③ 后序


void dfs(TreeNode root) {
    dfs(root.left);
    dfs(root.right);
    visit(root);
}


1. 非递归实现二叉树的前序遍历


144. Binary Tree Preorder Traversal (Medium)


Leetcode / 力扣


public List<Integer> preorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    Stack<TreeNode> stack = new Stack<>();
    stack.push(root);
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        if (node == null) continue;
        ret.add(node.val);
        stack.push(node.right);  // 先右后左,保证左子树先遍历
        stack.push(node.left);
    }
    return ret;
}


2. 非递归实现二叉树的后序遍历


145. Binary Tree Postorder Traversal (Medium)


Leetcode / 力扣


前序遍历为 root -> left -> right,后序遍历为 left -> right -> root。可以修改前序遍历成为 root -> right -> left,那么这个顺序就和后序遍历正好相反。


public List<Integer> postorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    Stack<TreeNode> stack = new Stack<>();
    stack.push(root);
    while (!stack.isEmpty()) {
        TreeNode node = stack.pop();
        if (node == null) continue;
        ret.add(node.val);
        stack.push(node.left);
        stack.push(node.right);
    }
    Collections.reverse(ret);
    return ret;
}


3. 非递归实现二叉树的中序遍历


94. Binary Tree Inorder Traversal (Medium)


Leetcode / 力扣


public List<Integer> inorderTraversal(TreeNode root) {
    List<Integer> ret = new ArrayList<>();
    if (root == null) return ret;
    Stack<TreeNode> stack = new Stack<>();
    TreeNode cur = root;
    while (cur != null || !stack.isEmpty()) {
        while (cur != null) {
            stack.push(cur);
            cur = cur.left;
        }
        TreeNode node = stack.pop();
        ret.add(node.val);
        cur = node.right;
    }
    return ret;
}

相关文章
|
1天前
|
存储 算法 编译器
米哈游面试算法题:有效的括号
米哈游面试算法题:有效的括号
28 0
|
1天前
|
负载均衡 算法 应用服务中间件
面试题:Nginx有哪些负载均衡算法?Nginx位于七层网络结构中的哪一层?
字节跳动面试题:Nginx有哪些负载均衡算法?Nginx位于七层网络结构中的哪一层?
44 0
|
1天前
|
算法
【算法与数据结构】二叉树(前中后)序遍历2
【算法与数据结构】二叉树(前中后)序遍历
|
1天前
|
算法
算法系列--递归(2)--二叉树专题(上)
算法系列--递归(2)--二叉树专题
24 0
|
1天前
|
存储 缓存 算法
面试遇到算法题:实现LRU缓存
V哥的这个实现的关键在于维护一个双向链表,它可以帮助我们快速地访问、更新和删除最近最少使用的节点,同时使用哈希表来提供快速的查找能力。这样,我们就可以在 O(1) 的时间复杂度内完成所有的缓存操作。哈哈干净利索,回答完毕。
|
1天前
|
算法 DataX
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
|
1天前
|
算法 搜索推荐 Python
数据结构与算法在Python面试中的应用实例
【4月更文挑战第13天】本文聚焦Python面试中的数据结构与算法问题,包括排序算法、链表操作和树图遍历。重点讨论了快速排序、链表反转和二叉树前序遍历的实现,并指出理解算法原理、处理边界条件及递归操作是避免错误的关键。通过实例代码和技巧分享,帮助面试者提升面试表现。
13 0
|
1天前
|
设计模式 算法 Java
如何在面试中应对编程与算法面试?
面试中,编程能力至关重要,主要分为三个层次:初级关注基本功,如语法、原理和常见问题解决;高级涉及数据结构与算法,基础算法如排序对中小厂重要,大厂则需深入数据结构;资深专家层次需精通设计模式,以保证代码的扩展性和维护性。提升编程技能可采用PDCA循环学习法,从计划到执行、检查、行动不断迭代。通过实践项目如开发后端系统、测试框架来检验学习成果,并逐步学习算法和设计模式。坚持不懈的努力和重构将助你成为技术专家。记住,超越大多数人的关键在于持续学习和专注深耕。
7 0
如何在面试中应对编程与算法面试?
|
1天前
|
算法
算法系列--递归(2)--二叉树专题(下)
算法系列--递归(2)--二叉树专题(下)
20 0
|
1天前
|
算法 索引
【算法与数据结构】深入二叉树实现超详解(全源码优化)
【算法与数据结构】深入二叉树实现超详解(全源码优化)

热门文章

最新文章