1 Stream概述
Java 8 是一个非常成功的版本,这个版本新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。
那么什么是Stream?
Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。
Stream可以由数组或集合创建,对流的操作分为两种:
中间操作,每次返回一个新的流,可以有多个。
终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。
另外,Stream有几个特性:
stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。
2 Stream的创建
Stream可以通过集合数组创建。
2.1 通过 java.util.Collection.stream() 方法用集合创建流
List list = Arrays.asList(“a”, “b”, “c”);
// 创建一个顺序流
Stream stream = list.stream();
// 创建一个并行流
Stream parallelStream = list.parallelStream();
2.2、使用java.util.Arrays.stream(T[] array)方法用数组创建流
int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);
2.3、使用Stream的静态方法:of()、iterate()、generate()
Stream stream = Stream.of(1, 2, 3, 4, 5, 6); Stream stream2 = Stream.iterate(0, (x) -> x + 3).limit(4); stream2.forEach(System.out::println); Stream stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println);
输出结果:
0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652
stream和parallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
如果流中的数据量足够大,并行流可以加快处速度。
除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:
Optional findFirst = list.stream().parallel().filter(x->x>6).findFirst();
1
3 Stream的使用
在使用stream之前,先理解一个概念:Optional 。
Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。
更详细说明请见:菜鸟教程Java 8 Optional类
接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
案例使用的员工类
这是后面案例中使用的员工类:
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, “female”, “New York”));
class Person {
private String name; // 姓名
private int salary; // 薪资
private int age; // 年龄
private String sex; //性别
private String area; // 地区
// 构造方法 public Person(String name, int salary, int age,String sex,String area) { this.name = name; this.salary = salary; this.age = age; this.sex = sex; this.area = area; } // 省略了get和set,请自行添加
}
3.1 遍历/匹配(foreach/find/match)
Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。
// import已省略,请自行添加,后面代码亦是
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
// 遍历输出符合条件的元素 list.stream().filter(x -> x > 6).forEach(System.out::println); // 匹配第一个 Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst(); // 匹配任意(适用于并行流) Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x < 6); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch); }
}
3.2 筛选(filter)
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
案例一:筛选出Integer集合中大于7的元素,并打印出来
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
Stream stream = list.stream();
stream.filter(x -> x > 7).forEach(System.out::println);
}
}
//在集合中查询用户名为huxiansen的集合 为true的返回
List<User> userList = list.stream().filter(user -> "huxiansen".equals(user.getUsername())).collect(Collectors.toList());
预期结果:
8 9
案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。
public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));
List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList); }
}
运行结果:
高于8000的员工姓名:[Tom, Anni, Owen]
3.3 聚合(max/min/count)
max、min、count这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
案例一:获取String集合中最长的元素。
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“adnm”, “admmt”, “pot”, “xbangd”, “weoujgsd”);
Optional<String> max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get()); }
}
输出结果:
最长的字符串:weoujgsd
案例二:获取Integer集合中的最大值。
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 9, 4, 11, 6);
// 自然排序 Optional<Integer> max = list.stream().max(Integer::compareTo); // 自定义排序 Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get()); }
}
输出结果:
自然排序的最大值:11
自定义排序的最大值:11
案例三:获取员工工资最高的人。
public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));
Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary()); }
}
输出结果:
员工工资最大值:9500
案例四:计算Integer集合中大于6的元素的个数。
import java.util.Arrays;
import java.util.List;
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count); }
}
输出结果:
list中大于6的元素个数:4
3.4 映射(map/flatMap)
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。
public class StreamTest {
public static void main(String[] args) {
String[] strArr = { “abcd”, “bcdd”, “defde”, “fTr” };
List strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11); List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew); }
}
输出结果:
每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14]
案例二:将员工的薪资全部增加1000。
public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));
// 不改变原来员工集合的方式 List<Person> personListNew = personList.stream().map(person -> { Person personNew = new Person(person.getName(), 0, 0, null, null); personNew.setSalary(person.getSalary() + 10000); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary()); System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary()); // 改变原来员工集合的方式 List<Person> personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary()); System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary()); }
}
20
21
22
23
24
25
26
27
28
输出结果:
一次改动前:Tom–>8900
一次改动后:Tom–>18900
二次改动前:Tom–>18900
二次改动后:Tom–>18900
案例三:将两个字符数组合并成一个新的字符数组。
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“m,k,l,a”, “1,3,5,7”);
List listNew = list.stream().flatMap(s -> {
// 将每个元素转换成一个stream
String[] split = s.split(",");
Stream s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());
System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew); }
}
输出结果:
处理前的集合:[m-k-l-a, 1-3-5]
处理后的集合:[m, k, l, a, 1, 3, 5]
3.5 归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
案例一:求Integer集合的元素之和、乘积和最大值。
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional sum = list.stream().reduce((x, y) -> x + y);
// 求和方式2
Optional sum2 = list.stream().reduce(Integer::sum);
// 求和方式3
Integer sum3 = list.stream().reduce(0, Integer::sum);
// 求乘积 Optional<Integer> product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2); }
输出结果:
list求和:29,29,29
list求积:2112
list求和:11,11
案例二:求所有员工的工资之和和最高工资。
public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));
// 求工资之和方式1: Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2); }
}
输出结果:
工资之和:49300,49300,49300
最高工资:9500,9500
3.6 收集(collect)
collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect主要依赖java.util.stream.Collectors类内置的静态方法。
3.6.1 归集(toList/toSet/toMap)
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。
下面用一个案例演示toList、toSet和toMap:
public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map); }
}
运行结果:
toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}