算法练习Day56|583. 两个字符串的删除操作 ● 72. 编辑距离

简介: 算法练习Day56|583. 两个字符串的删除操作 ● 72. 编辑距离

LeetCode:583. 两个字符串的删除操作

583. 两个字符串的删除操作 - 力扣(LeetCode)

1.思路

求公共子串,将两字符串长度之和减去2倍的公共子串的长度。

2.代码实现

// 求最长公共子串
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return word1.length() + word2.length() - 2 * dp[word1.length()][word2.length()];
    }
}
// 直接求操作次数
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        for (int i = 1; i <= word1.length(); i++) {
            for (int j = 1; j <= word2.length(); j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j - 1] + 2, Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}

3.复杂度分析

LeetCode: 72. 编辑距离

72. 编辑距离 - 力扣(LeetCode)

1.思路

对于不同元素,添加和删除都是一步操作,替换是一步操作,动规状态转移方程的推导可以从左上、左侧、上侧来传递,对应的值要+1。

2.代码实现

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 1; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        for (int j = 1; j <= word2.length(); j++) {
            dp[0][j] = j;
        }
        for (int i = 1; i <= word1.length(); i++) {
            for (int j = 1; j <= word2.length(); j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}

3.复杂度分析

时间复杂度:O(n * m).

空间复杂度:O(n * m).

相关文章
|
5月前
|
算法
【算法】滑动窗口——找到字符串中所有字母异位词
【算法】滑动窗口——找到字符串中所有字母异位词
|
3月前
|
算法
两个字符串匹配出最长公共子序列算法
本文介绍了最长公共子序列(LCS)问题的算法实现,通过动态规划方法求解两个字符串的最长公共子序列,并提供了具体的编程实现细节和示例。
111 1
两个字符串匹配出最长公共子序列算法
|
5月前
|
算法 Java
掌握算法学习之字符串经典用法
文章总结了字符串在算法领域的经典用法,特别是通过双指针法来实现字符串的反转操作,并提供了LeetCode上相关题目的Java代码实现,强调了掌握这些技巧对于提升算法思维的重要性。
|
6月前
|
自然语言处理 算法 搜索推荐
字符串相似度算法完全指南:编辑、令牌与序列三类算法的全面解析与深入分析
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
330 1
|
6月前
|
数据采集 算法 JavaScript
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
JavaScript字符串搜索涵盖`indexOf`、`includes`及KMP算法。`indexOf`返回子字符串位置,`includes`检查是否包含子字符串。KMP是高效的搜索算法,尤其适合长模式匹配。示例展示了如何在数据采集(如网页爬虫)中使用这些方法,结合代理IP进行安全搜索。代码示例中,搜索百度新闻结果并检测是否含有特定字符串。学习这些技术能提升编程效率和性能。
145 1
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
|
5月前
|
算法 C++
惊爆!KPM算法背后的秘密武器:一行代码揭秘字符串最小周期的终极奥义,让你秒变编程界周期大师!
【8月更文挑战第4天】字符串最小周期问题旨在找出字符串中最短重复子串的长度。KPM(实为KMP,Knuth-Morris-Pratt)算法,虽主要用于字符串匹配,但其生成的前缀函数(next数组)也可用于求解最小周期。核心思想是构建LPS数组,记录模式串中每个位置的最长相等前后缀长度。对于长度为n的字符串S,其最小周期T可通过公式ans = n - LPS[n-1]求得。通过分析周期字符串的特性,可证明该方法的有效性。提供的C++示例代码展示了如何计算给定字符串的最小周期,体现了KPM算法在解决此类问题上的高效性。
98 0
|
6月前
|
算法 Java
KMP算法详解及其在字符串匹配中的应用
KMP算法详解及其在字符串匹配中的应用
|
7月前
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集
|
7月前
|
算法 Java
Java数据结构与算法:字符串匹配算法之暴力匹配
Java数据结构与算法:字符串匹配算法之暴力匹配
|
7月前
|
算法 Java
Java数据结构与算法:字符串匹配算法之KMP算法
Java数据结构与算法:字符串匹配算法之KMP算法

热门文章

最新文章