程序示例精选
C++/Yolov8人体特征识别 广场室内 人数统计
如需安装运行环境或远程调试,可点击右边博主头像或昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!
前言
这篇博客针对<<C++/Yolov8人体特征识别 广场室内 人数统计>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。
文章目录
一、所需工具软件
二、使用步骤
1. 引入库
2. 识别图像特征
3. 参数设置
4. 运行结果
三、在线协助
一、所需工具软件
1. VS2019, C++
2. Yolov8, OpenCV
二、使用步骤
1.引入库
代码如下(示例):
#include <iostream> #include<opencv2/opencv.hpp> #include<math.h> #include "yolov8_onnx.h" #include<time.h> using namespace std; using namespace cv; using namespace dnn;
2.识别图像特征
代码如下(示例):
bool CheckParams(int netHeight, int netWidth, const int* netStride, int strideSize) { if (netHeight % netStride[strideSize - 1] != 0 || netWidth % netStride[strideSize - 1] != 0) { cout << "Error:_netHeight and _netWidth must be multiple of max stride " << netStride[strideSize - 1] << "!" << endl; return false; } return true; } void LetterBox(const cv::Mat& image, cv::Mat& outImage, cv::Vec4d& params, const cv::Size& newShape, bool autoShape, bool scaleFill, bool scaleUp, int stride, const cv::Scalar& color) { if (false) { int maxLen = MAX(image.rows, image.cols); outImage = Mat::zeros(Size(maxLen, maxLen), CV_8UC3); image.copyTo(outImage(Rect(0, 0, image.cols, image.rows))); params[0] = 1; params[1] = 1; params[3] = 0; params[2] = 0; } cv::Size shape = image.size(); float r = std::min((float)newShape.height / (float)shape.height, (float)newShape.width / (float)shape.width); if (!scaleUp) r = std::min(r, 1.0f); float ratio[2]{ r, r }; int new_un_pad[2] = { (int)std::round((float)shape.width * r),(int)std::round((float)shape.height * r) }; auto dw = (float)(newShape.width - new_un_pad[0]); auto dh = (float)(newShape.height - new_un_pad[1]); if (autoShape) { dw = (float)((int)dw % stride); dh = (float)((int)dh % stride); } else if (scaleFill) { dw = 0.0f; dh = 0.0f; new_un_pad[0] = newShape.width; new_un_pad[1] = newShape.height; ratio[0] = (float)newShape.width / (float)shape.width; ratio[1] = (float)newShape.height / (float)shape.height; } dw /= 2.0f; dh /= 2.0f; if (shape.width != new_un_pad[0] && shape.height != new_un_pad[1]) { cv::resize(image, outImage, cv::Size(new_un_pad[0], new_un_pad[1])); } else { outImage = image.clone(); } int top = int(std::round(dh - 0.1f)); int bottom = int(std::round(dh + 0.1f)); int left = int(std::round(dw - 0.1f)); int right = int(std::round(dw + 0.1f)); params[0] = ratio[0]; params[1] = ratio[1]; params[2] = left; params[3] = top; cv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color); } void GetMask(const cv::Mat& maskProposals, const cv::Mat& maskProtos, std::vector<OutputSeg>& output, const MaskParams& maskParams) { //cout << maskProtos.size << endl; int seg_channels = maskParams.segChannels; int net_width = maskParams.netWidth; int seg_width = maskParams.segWidth; int net_height = maskParams.netHeight; int seg_height = maskParams.segHeight; float mask_threshold = maskParams.maskThreshold; Vec4f params = maskParams.params; Size src_img_shape = maskParams.srcImgShape; Mat protos = maskProtos.reshape(0, { seg_channels,seg_width * seg_height }); Mat matmul_res = (maskProposals * protos).t(); Mat masks = matmul_res.reshape(output.size(), { seg_width,seg_height }); vector<Mat> maskChannels; split(masks, maskChannels); for (int i = 0; i < output.size(); ++i) { Mat dest, mask; //sigmoid cv::exp(-maskChannels[i], dest); dest = 1.0 / (1.0 + dest); Rect roi(int(params[2] / net_width * seg_width), int(params[3] / net_height * seg_height), int(seg_width - params[2] / 2), int(seg_height - params[3] / 2)); dest = dest(roi); resize(dest, mask, src_img_shape, INTER_NEAREST); //crop Rect temp_rect = output[i].box; mask = mask(temp_rect) > mask_threshold; output[i].boxMask = mask; } } void GetMask2(const Mat& maskProposals, const Mat& mask_protos, OutputSeg& output, const MaskParams& maskParams) { int seg_channels = maskParams.segChannels; int net_width = maskParams.netWidth; int seg_width = maskParams.segWidth; int net_height = maskParams.netHeight; int seg_height = maskParams.segHeight; float mask_threshold = maskParams.maskThreshold; Vec4f params = maskParams.params; Size src_img_shape = maskParams.srcImgShape; Rect temp_rect = output.box; //crop from mask_protos int rang_x = floor((temp_rect.x * params[0] + params[2]) / net_width * seg_width); int rang_y = floor((temp_rect.y * params[1] + params[3]) / net_height * seg_height); int rang_w = ceil(((temp_rect.x + temp_rect.width) * params[0] + params[2]) / net_width * seg_width) - rang_x; int rang_h = ceil(((temp_rect.y + temp_rect.height) * params[1] + params[3]) / net_height * seg_height) - rang_y; //如果下面的 mask_protos(roi_rangs).clone()位置报错,说明你的output.box数据不对,或者矩形框就1个像素的,开启下面的注释部分防止报错。 rang_w = MAX(rang_w, 1); rang_h = MAX(rang_h, 1); if (rang_x + rang_w > seg_width) { if (seg_width - rang_x > 0) rang_w = seg_width - rang_x; else rang_x -= 1; } if (rang_y + rang_h > seg_height) { if (seg_height - rang_y > 0) rang_h = seg_height - rang_y; else rang_y -= 1; } vector<Range> roi_rangs; roi_rangs.push_back(Range(0, 1)); roi_rangs.push_back(Range::all()); roi_rangs.push_back(Range(rang_y, rang_h + rang_y)); roi_rangs.push_back(Range(rang_x, rang_w + rang_x)); //crop Mat temp_mask_protos = mask_protos(roi_rangs).clone(); Mat protos = temp_mask_protos.reshape(0, { seg_channels,rang_w * rang_h }); Mat matmul_res = (maskProposals * protos).t(); Mat masks_feature = matmul_res.reshape(1, { rang_h,rang_w }); Mat dest, mask; //sigmoid cv::exp(-masks_feature, dest); dest = 1.0 / (1.0 + dest); int left = floor((net_width / seg_width * rang_x - params[2]) / params[0]); int top = floor((net_height / seg_height * rang_y - params[3]) / params[1]); int width = ceil(net_width / seg_width * rang_w / params[0]); int height = ceil(net_height / seg_height * rang_h / params[1]); resize(dest, mask, Size(width, height), INTER_NEAREST); mask = mask(temp_rect - Point(left, top)) > mask_threshold; output.boxMask = mask; } void DrawPred(Mat& img, vector<OutputSeg> result, std::vector<std::string> classNames, vector<Scalar> color) { Mat mask = img.clone(); for (int i = 0; i < result.size(); i++) { int left, top; left = result[i].box.x; top = result[i].box.y; int color_num = i; rectangle(img, result[i].box, color[result[i].id], 2, 8); if(result[i].boxMask.rows&& result[i].boxMask.cols>0) mask(result[i].box).setTo(color[result[i].id], result[i].boxMask); //string label = classNames[result[i].id] + ":" + to_string(result[i].confidence); std::ostringstream oss; oss << round(10 / result[i].confidence * 10) / 10.0; std::cout << oss.str() << std::endl; //string label = classNames[result[i].id] + ":" + oss.str(); string label = classNames[result[i].id]; int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.8, 1, &baseLine); top = max(top, labelSize.height); //rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED); putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.6, color[result[i].id], 2); } addWeighted(img, 0.5, mask, 0.5, 0, img); //add mask to src imshow("1", img); //imwrite("out.bmp", img); waitKey(); //destroyAllWindows(); }
3.参数定义
代码如下(示例):
int main() { //string img_path = "./data/image/aa.png"; string img_path = "./data/image/11.jpeg"; string detect_model_path = "yolov8n.onnx"; Mat img = imread(img_path); Yolov8Onnx task_detect_onnx; yolov8_onnx(task_detect_onnx,img,detect_model_path); //onnxruntime detect return 0; }
4. 运行结果如下
三、在线协助:
如需安装运行环境或远程调试, 可点击右边 博主头像 或 昵称 , 进入个人主页查看博主联系方式 ,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作
博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客
博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客
Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客
个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主
博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主