Flink DataStream API-概念、模式、作业流程和程序

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 前几篇介绍了Flink的入门、架构原理、安装等,相信你对Flink已经了解入门。接下来开始介绍Flink DataStream API内容,先介绍DataStream API基本概念和使用,然后介绍核心概念,最后再介绍经典案例和代码实现。本篇内容:Flink DataStream API的概念、模式、作业流程和程序。

前几篇介绍了Flink的入门、架构原理、安装等,相信你对Flink已经了解入门。接下来开始介绍Flink DataStream API内容,先介绍DataStream API基本概念和使用,然后介绍核心概念,最后再介绍经典案例和代码实现。本篇内容:Flink DataStream API的概念、模式、作业流程和程序。

1、基本概念

用于处理数据流的API称之为DataStream API,而DataStream类用于表示Flink程序中的数据集合。你可以将它视为包含重复项的不可变数据集合。这些数据可以是有限的,也可以是无限的,用于处理这些数据的API是相同的。

DataStream数据集都是分布式数据集,分布式数据集是指:一个数据集存储在不同的服务器节点上,每个节点存储数据集的一部分,例如下图:

在编程时,可以把DataStream看作一个数据操作的基本单位,而不必关心数据的分布式特性,Flink会自动将其中的数据分发到集群的各个节点。

2、执行模式

Flink的执行模式分为3种:

  1. STREAMING:典型的DataStream执行模式(默认)
  2. BATCH:在DataStream API上以批处理方式执行
  3. AUTOMATIC:让系统根据数据源的有界性来决定

3、作业流程和程序结构

3.1、Flink作业流程

前面我们介绍过Flink JobManager是Flink集群的主节点,它包含3个不同的组件:Flink Resource Manager、Dispatcher、运行每个Flink Job的JobMaster。JobManager和TaskManager被启动后,TaskManager会将自己注册给JobManager中的ResourceManager(资源注册)。

Flink作业流程如下:

  1. 用户编写应用程序代码,并通过Flink客户端提交作业。,调用Flink API构建逻辑数据流图,然后转为作业图JobGraph,并附加到StreamExecutionEnvironment中。代码和相关配置文件被编译打包,被提交到JobManager的Dispatcher,形成一个应用作业。
  2. Dispatcher(JobManager的一个组件)接收到这个作业,启动JobManager,JobManager负责本次作业的各项协调工作。
  3. 接下来JobManager向ResourceManager申请本次作业所需的资源。
  4. JobManager将用户作业中的作业图JobGraph转化为并行化的物理执行图,对作业并行处理并将其子任务分发部署到多个TaskManager上执行。每个作业的并行子任务将在Task Slot中执行。至此Flink作业就开始执行了
  5. TaskManager在执行计算任务的过程中可能会与其他TaskManager交换数据,会使用相应的数据交换策略。同时,TaskManager也会将一些任务状态信息反馈给JobManager,这些信息包括任务启动、运行或终止的状态、快照的元数据等。

Flink作业流程图见下图:

3.2、Flink程序结构

前面我们介绍过,Flink的程序是有固定模板的,具体如下:

  1. 获取执行环境
  2. 加载/创建初始数据
  3. 对初始数据进行转换
  4. 指定计算结果的输出位置
  5. 触发程序执行

所有Flink程序都是延迟(惰性)执行的:执行程序的main()方法时,不会直接进行数据加载和转换,而是将每个操作添加到数据流图,当在执行环境中调用execute()显式触发执行时才会执行这些操作。程序是在本地执行还是在群集上执行取决于执行环境的类型。惰性计算允许构建复杂的程序,Flink将其作为一个整体规划的单元执行。

Flink的程序模板见下面的示例。示例采用流计算,读取socket数据源,对输入的数据进行统计,最后输出到控制台。执行main方法前,现在本地开启netcat,nc -lk 9999,然后输入任意字符,即可看到统计结果。

public static void main(String[] args) throws Exception {
    // 1. 创建执行环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    // 2. 读取数据源
    DataStream<String> textStream = env.socketTextStream("localhost", 9999, "\n");
    // 3. 数据转换
    DataStream<Tuple2<String, Integer>> wordCountStream = textStream
            // 对数据源的单词进行拆分,每个单词记为1,然后通过out.collect将数据发射到下游算子
            .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                         @Override
                         public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                             for (String word : value.split("\\s")) {
                                 out.collect(new Tuple2<>(word, 1));
                             }
                         }
                     }
            )
            // 对单词进行分组
            .keyBy(value -> value.f0)
            // 对某个组里的单词的数量进行滚动相加统计
            .reduce((a, b) -> new Tuple2<>(a.f0, a.f1 + b.f1));
    // 4. 数据输出。字节输出到控制台
    wordCountStream.print("WordCountStream=======").setParallelism(1);
    // 5. 启动任务
    env.execute(WordCountStream.class.getSimpleName());
}

原文链接: http://www.mangod.top/articles/2023/07/31/1690758123965.htmlhttps://mp.weixin.qq.com/s/XICBfneJWFe4quwf3kRQXQ

感谢你的阅读,码字不易,欢迎点赞、关注、收藏!!!

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
消息中间件 分布式计算 大数据
大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源
大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源
150 0
|
4月前
|
API 数据安全/隐私保护 数据格式
API 资源详解:从概念到实战的完整指南
本文深入解析了 API 资源的概念、特征与设计原则,涵盖 RESTful 规范、资源分类、层级结构及实际应用示例。内容还包括版本管理、安全策略与性能优化技巧,帮助开发者构建高效、可维护的 API 系统。
367 115
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
238 2
利用java8 的 CompletableFuture 优化 Flink 程序
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
521 0
|
分布式计算 监控 大数据
大数据-114 Flink DataStreamAPI 程序输入源 自定义输入源 Rich并行源 RichParallelSourceFunction
大数据-114 Flink DataStreamAPI 程序输入源 自定义输入源 Rich并行源 RichParallelSourceFunction
205 0
|
9月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
701 12
Flink CDC YAML:面向数据集成的 API 设计
|
8月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
330 5
|
监控 安全 测试技术
API 管理的概念是什么?Apifox 为什么值得推荐?
在互联世界中,API如同软件间的“翻译官”,让应用能相互交流、共享数据。随着API数量激增,有效管理变得至关重要。API管理确保API的质量、安全与性能,提升开发效率及用户体验。它覆盖API从设计到废弃的全过程。利用如Apifox这样的工具,可以轻松实现API的设计、测试、文档管理和模拟等。Apifox集多种功能于一体,简化工作流程,提高团队协作效率。在选择API管理工具时,Apifox以全面的功能和友好的使用体验脱颖而出,成为开发者们的优选。随着技术发展,未来API管理将更加智能化和高效。
453 126
API 管理的概念是什么?Apifox 为什么值得推荐?
|
Java 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何在程序因故停掉后能从之前的Binlog位置继续读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
缓存 负载均衡 测试技术
‌API开发的基础概念和作用‌
API(Application Programming Interface)是一组定义了软件组件之间交互规则的接口。它提供了一种标准化的方式,让不同的软件组件之间可以进行通信和交互。
394 2