Microsoft对测试人员所要求的训练和技能

简介:
   微软测试人员有提供以下training roadmap
  0. Day1-2: Cross Discipline New Employee Orientation
  1. 0-2 years
   Test Design Approaches
  Test Automation
  Debugging
  Model Based Testing
  Elective Courses
  2. 2-5 years
  Technical Electives: Design patterns,  SQL  server, C#, C++, protocols, other skill based courses
  3. 5-10 years: 才算是senior tester
  目前和公司的训练课程比较,微软在0-2 years做的事情和我们差不多, 不过我们是缺少了debugging这一块, 也能是这一块并不容易处理, 或者是目前我们这方面的人才也不够, 所以排不出这样的课程.
  不过到了2-5years, 微软在这方面做的就不错. 目前我们公司在这方面就没有太多着墨, 或许我们在deveopler有开这方面的课, 但是我们却没有强迫tester去参加. 如果我们没有加强这一块, tester会不容易在前期有更多帮助, 或者是在review, debugging能出更多力. 所以这应该是之后我们公司要努力的一块.
   另外, 微软也要求测试人员, 除了hard skill外, 也需要具备以下的soft skill
  1. 分析解决问题的能力
  2. 客户为主的创新
  3. 卓越技术
  4.  项目管理
  5. 对品质的热情
  6. 战略眼光: 可以帮助我们超越竞争者和增加stakeholder的价值
  7. 自信: 要有自信知道这些bug是对顾客非常重要, 因此一但发生这些问题时, 便会强力要求开发人员修改
  8. 冲击和影响: 影响力是来自于自信和经验,冲击是来自知道如何让改变发生
  9. 跨界合作: 创新常常来自于跨部门或组织的合作, 若是只注意自己的功能或测试这样不会成功
  10. 自我意识: 会自我捡讨自我批判, 来不段 学习和改进

最新内容请见作者的GitHub页:http://qaseven.github.io/
相关文章
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
97 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
1月前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
44 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
3月前
|
jenkins 测试技术 应用服务中间件
【专业测试技能】全流程掌握:部署测试环境的策略与实践
本文分享了关于部署测试环境的策略与实践。文章讨论了部署测试环境的全过程,包括服务如MySQL、Redis、Zookeeper等的部署,以及解决服务间的依赖和兼容问题。文中还介绍了使用Jenkins、Docker等工具进行部署的方法,并通过实战案例讲解了如何创建和管理Jenkins Job、配置代理服务器Nginx、进行前后端服务的访问和优化。最后,作者强调了提问的重要性,并鼓励大家通过互联网解决遇到的问题。
88 2
【专业测试技能】全流程掌握:部署测试环境的策略与实践
|
3月前
|
缓存 运维 数据库
【测试人员兼职指南】利用专业技能:如何从测试转向开发赚钱
本文分享了作者作为测试人员如何利用专业技能转向开发来兼职赚钱的经验,包括分析和解决登录页面跳转、避免重复账号注册、用户登录后首页显示用户名以及添加退出功能等问题,并提供了Django项目中使用sqlite3数据库和后台管理的扩展技巧。
130 1
【测试人员兼职指南】利用专业技能:如何从测试转向开发赚钱
|
3月前
|
测试技术 持续交付 Apache
深度挖掘:Python性能测试中JMeter与Locust的隐藏技能🔍
【8月更文挑战第5天】随着软件规模扩大,性能测试对系统稳定性至关重要。Apache JMeter和Locust是两大主流工具,各有千秋。本文探索它们在Python环境下的进阶用法,挖掘更多性能测试潜力。JMeter功能强大,支持多种协议,可通过命令行模式执行复杂测试计划,并与Python集成实现动态测试数据生成。Locust基于Python,通过编写简洁脚本模拟HTTP请求,支持自定义请求及与Python库深度集成。掌握这些技巧可实现高度定制化测试场景,有效识别性能瓶颈,提升应用稳定性。
128 1
|
3月前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
1月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
1328 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
PyTorch 算法框架/工具 计算机视觉
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
110 2
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
333 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
95 0
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)