第 8 天_广度优先搜索 / 深度优先搜索【算法入门】

简介: 第 8 天_广度优先搜索 / 深度优先搜索【算法入门】

617. 合并二叉树

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

示例 1:

输入: 
  Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
输出: 
合并后的树:
       3
      / \
     4   5
    / \   \ 
   5   4   7

注意: 合并必须从两个树的根节点开始。

题解

思路
递归
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if(root2==null){
            return root1;
        }
        if(root1==null){
            return root2;
        }
        TreeNode merged = new TreeNode(root1.val + root2.val);
        merged.left=mergeTrees(root1.left,root2.left);
        merged.right=mergeTrees(root1.right,root2.right);
        return merged;
    }
}



116. 填充每个节点的下一个右侧节点指针

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。
进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

示例:



输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。

提示:

  • 树中节点的数量少于 4096
  • -1000 <= node.val <= 1000

官方

class Solution {
    public Node connect(Node root) {
        if (root == null) {
            return root;
        }
        // 初始化队列同时将第一层节点加入队列中,即根节点
        Queue<Node> queue = new LinkedList<Node>(); 
        queue.add(root);
        // 外层的 while 循环迭代的是层数
        while (!queue.isEmpty()) {
            // 记录当前队列大小
            int size = queue.size();
            // 遍历这一层的所有节点
            for (int i = 0; i < size; i++) {
                // 从队首取出元素
                Node node = queue.poll();
                // 连接
                if (i < size - 1) {
                    node.next = queue.peek();
                }
                // 拓展下一层节点
                if (node.left != null) {
                    queue.add(node.left);
                }
                if (node.right != null) {
                    queue.add(node.right);
                }
            }
        }
        // 返回根节点
        return root;
    }
}

相关文章
|
2月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
2月前
|
存储 算法
算法入门:专题一:双指针(有效三角形的个数)
给定一个数组,找出能组成三角形的三元组个数。利用“两边之和大于第三边”的性质,先排序,再用双指针优化。固定最大边,左右指针从区间两端向内移动,若两短边之和大于最长边,则中间所有组合均有效,时间复杂度由暴力的O(n³)降至O(n²)。
|
2月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
266 3
|
8月前
|
人工智能 运维 算法
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
202 3
|
9月前
|
监控 算法 安全
基于 PHP 语言深度优先搜索算法的局域网网络监控软件研究
在当下数字化时代,局域网作为企业与机构内部信息交互的核心载体,其稳定性与安全性备受关注。局域网网络监控软件随之兴起,成为保障网络正常运转的关键工具。此类软件的高效运行依托于多种数据结构与算法,本文将聚焦深度优先搜索(DFS)算法,探究其在局域网网络监控软件中的应用,并借助 PHP 语言代码示例予以详细阐释。
200 1
|
5月前
|
机器学习/深度学习 数据采集 算法
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
121 0
|
9月前
|
监控 算法 JavaScript
企业用网络监控软件中的 Node.js 深度优先搜索算法剖析
在数字化办公盛行的当下,企业对网络监控的需求呈显著增长态势。企业级网络监控软件作为维护网络安全、提高办公效率的关键工具,其重要性不言而喻。此类软件需要高效处理复杂的网络拓扑结构与海量网络数据,而算法与数据结构则构成了其核心支撑。本文将深入剖析深度优先搜索(DFS)算法在企业级网络监控软件中的应用,并通过 Node.js 代码示例进行详细阐释。
187 2
|
9月前
|
存储 算法 JavaScript
基于 Node.js 深度优先搜索算法的上网监管软件研究
在数字化时代,网络环境呈现出高度的复杂性与动态性,上网监管软件在维护网络秩序与安全方面的重要性与日俱增。此类软件依托各类数据结构与算法,实现对网络活动的精准监测与高效管理。本文将深度聚焦于深度优先搜索(DFS)算法,并结合 Node.js 编程语言,深入剖析其在上网监管软件中的应用机制与效能。
126 6
|
9月前
|
机器学习/深度学习 算法 机器人
强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
本文介绍了时间差分法(TD)中的两种经典算法:SARSA和Q-Learning。二者均为无模型强化学习方法,通过与环境交互估算动作价值函数。SARSA是On-Policy算法,采用ε-greedy策略进行动作选择和评估;而Q-Learning为Off-Policy算法,评估时选取下一状态中估值最大的动作。相比动态规划和蒙特卡洛方法,TD算法结合了自举更新与样本更新的优势,实现边行动边学习。文章通过生动的例子解释了两者的差异,并提供了伪代码帮助理解。
694 2

热门文章

最新文章