【BFS】魔板(c++基础算法)

简介: 【BFS】魔板(c++基础算法)

 本专栏上一篇:【BFS】八数码问题(c++基础算法)


目录

一.读题

①题面

②题意

三.做题

①算法原理

②算法实现

Ⅰ三种基本操作

Ⅱ操作序列

Ⅲ输出

Ⅳ一个特殊情况

四.AC代码

最后


一.读题

①题面

【宽搜(难度:6)】魔板

【题目描述】

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。

这是一张有8个大小相同的格子的魔板:

正在上传…重新上传取消

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。

对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A:

8 7 6 5

1 2 3 4

B:

4 1 2 3

5 8 7 6

C:

1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

【输入格式】

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间),表示目标状态。

【输出格式】

第一行包括一个整数,表示最短操作序列的长度。

第二行在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

【样例输入】

2 6 8 4 5 7 3 1

【样例输出】

7

BCABCCB

②题意

很显然,这道题是让我们求12345678经过三种变化,到目标状态 的步数与变化操作。


三.做题

①算法原理

这题与【BFS】八数码问题极其相似,我就在讲论两者间的区别中,来把这题讲给你。

②算法实现

Ⅰ三种基本操作

相对于八数码的空格上下左右操作,这题有三种不同的操作。

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A:

8 7 6 5

1 2 3 4

B:

4 1 2 3

5 8 7 6

C:

1 7 2 4

8 6 3 5

看到很多人都是用二维数组来搞,但我觉得没有必要。我直接在main函数中,利用switch()语句来进行。

“A”功能:循环j从1-4,交换a[j] 与a[9-j]。

“B”功能:循环j从1-3,交换a[j],a[4],和a[9-j],a[5].(不断对第j列[j会不断加1]和最后一列交换,最终达成目的)

“C”功能,直接换来换去。

switch(i)
      {
        case 1:
          for(int i=1;i<=4;i++)
          {
            swap(ne.a[i],ne.a[9-i]);
          }
          break;
        case 2: 
          for(int i=1;i<=3;i++)
          {
            swap(ne.a[i],ne.a[4]);
            swap(ne.a[9-i],ne.a[5]);
          }
          break;
        case 3: 
          swap(ne.a[3],ne.a[6]);
          swap(ne.a[7],ne.a[3]);
          swap(ne.a[3],ne.a[2]);
      }

image.gif

Ⅱ操作序列

我将每钟情况都赋予一个序列。当此情况可行(之前没出现过),先将其上一步序列赋值到它身上,在增加此次操作的序列。

for(int k=1;k<=q.front().ans;k++) ne.bz[k]=q.front().bz[k];
  ne.bz[ne.ans]=i;

image.gif

Ⅲ输出

先将操作次数输出,再对序列操作,然后输出。

对序列的操作:原有基础上,强制转换为字符,加上‘A’,减一(因为序列数为1时应输出A,而不建议会变为B,因此要减一)

if(ne.kt==ed.kt)
   {
       printf("%d\n",q.back().ans);
       for(int k=1;k<=q.back().ans;k++) printf("%c",q.back().bz[k]+'A'-1);
       exit(0); 
    }

image.gif

Ⅳ一个特殊情况

当目标状态与初始状态一样时,会无法进入我的输出语句。因此要在结尾输出一个0(因为当出现上述情况时,无需操作即可达到目标状态)


四.AC代码

不写注释啦!

#include<bits/stdc++.h>
using namespace std;
struct node{
  int kt,ans,bz[1005];
  int a[10];
}st,ed;
bool b[50000];
queue<node>q;
long kt(node t)
{
  long long s=1;
  for(int i=1;i<=8;i++)
  {
    int index=1,f=1,count=0;
    for(int j=i+1;j<=8;j++)
    {
      if(t.a[i]>t.a[j]) count++;
      f*=index++;
    }
    s=s+f*count;
  }
  return s;
}
int main()
{
  for(int i=1;i<=8;i++) st.a[i]=i;
  st.kt=kt(st);
  b[st.kt]=1;
  for(int i=1;i<=8;i++) scanf("%d",&ed.a[i]);
  ed.kt=kt(ed);
  q.push(st);
  while(!q.empty())
  {
    for(int i=1;i<=3;i++)
    {
      node ne=q.front();
      switch(i)
      {
        case 1:
          for(int i=1;i<=4;i++)
          {
            swap(ne.a[i],ne.a[9-i]);
          }
          break;
        case 2: 
          for(int i=1;i<=3;i++)
          {
            swap(ne.a[i],ne.a[4]);
            swap(ne.a[9-i],ne.a[5]);
          }
          break;
        case 3: 
          swap(ne.a[3],ne.a[6]);
          swap(ne.a[7],ne.a[3]);
          swap(ne.a[3],ne.a[2]);
      }
      ne.ans++;
      ne.kt=kt(ne);
      if(!b[ne.kt])
      {
        for(int k=1;k<=q.front().ans;k++) ne.bz[k]=q.front().bz[k];
        ne.bz[ne.ans]=i;
        b[ne.kt]=1;
        q.push(ne); 
        if(ne.kt==ed.kt)
                {
                  printf("%d\n",q.back().ans);
                  for(int k=1;k<=q.back().ans;k++) printf("%c",q.back().bz[k]+'A'-1);
                  exit(0); 
            }
      }
    }
    q.pop();
  }
  printf("0"); 
}

image.gif


最后

我是在网课期间摸鱼写作的,很辛苦。给个红心不过分吧。。。

相关文章
|
6月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
155 2
|
7月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
8月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
238 15
|
8月前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
8月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
143 0
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
180 17
|
5月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
149 4
|
5月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
157 0
|
7月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
155 4

热门文章

最新文章