分布式文件存储与数据缓存 Redis高可用分布式实践(下)(二)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
日志服务 SLS,月写入数据量 50GB 1个月
简介: 分布式文件存储与数据缓存 Redis高可用分布式实践(下)(二)

八、Redis其他功能

8.1 发布订阅

什么是发布与订阅

Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。

什么时候用发布订阅

看到发布订阅的特性,用来做一个简单的实时聊天系统再适合不过了。再比如,在一个博客网站中,有100个粉丝订阅了你,当你发布新文章,就可以推送消息给粉丝们拉。

Redis的发布与订阅

发布订阅命令行实现

订阅

subcribe 主题名字

示例:

127.0.0.1:6379> SUBSCRIBE topic1
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "topic1"
3) (integer)

发布命令

publish topic1 hello

示例:

打开另一个客户端,给topic1发布消息hello

127.0.0.1:6379> PUBLISH topic1 hello
(integer) 1

注意:

返回的1是订阅者数量。

打开第一个客户端可以看到发送的消息

127.0.0.1:6379> SUBSCRIBE channel-1
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "channel-1"
3) (integer) 1
1) "message"
2) "channel-1"
3) "hello"

注意:

发布的消息没有持久化,如果在订阅的客户端收不到hello,只能收到订阅后发布的消息。

8.2 慢查询

什么是慢查询

慢查询,顾名思义就是比较慢的查询,但是究竟是哪里慢呢?

Redis命令执行的整个过程

两点说明:

  1. 慢查询发生在第3阶段
  2. 客户端超时不一定慢查询,但慢查询是客户端超时的一个可能因素
  3. 慢查询日志是存放在Redis内存列表中。

什么是慢查询日志

慢查询日志是Redis服务端在命令执行前后计算每条命令的执行时长,当超过某个阈值时慢查询的命令就被记录在慢查询日志中。日志中记录了慢查询发生的时间,还有执行时长、具体什么命令等信息,它可以用来帮助开发和运维人员定位系统中存在的慢查询。

如何获取慢查询日志

可以使用slowlog get命令获取慢查询日志,在slowlog get后面还可以加一个数字,用于指定获取慢查询日志的条数,比如,获取3条慢查询日志:

127.0.0.1:6379> SLOWLOG get 3
1) 1) (integer) 0             #慢查询id
  2) (integer) 1640056567     #时间戳
  3) (integer) 11780    #执行时间
  4) 1) "FLUSHALL"      #执行慢查询的命令
  5) "127.0.0.1:43406"  #哪个客户端发出的命令
  6) ""

参数:

  1. 唯一标识ID
  2. 命令执行的时间戳
  3. 命令执行时长
  4. 执行的命名和参数

如何获取慢查询日志的长度

可以使用slowlog len命令获取慢查询日志的长度。

> slowlog len
(integer) 121

注意:

当前Redis中有121条慢查询日志。

怎么配置慢查询的参数

  • 命令执行时长的指定阈值 slowlog-log-slower-than。

slowlog-log-slower-than的作用是指定命令执行时长的阈值,执行命令的时长超过这个阈值时就会被记录下来。

  • 存放慢查询日志的条数 slowlog-max-len。

slowlog-max-len的作用是指定慢查询日志最多存储的条数。实际上,Redis使用了一个列表存放慢查询日志,slowlog-max-len就是这个列表的最大长度。

查看慢日志配置

查看redis慢日志配置,登陆redis服务器,使用redis-cli客户端连接redis server

127.0.0.1:6379> config get slow*
1) "slowlog-max-len"
2) "128"
3) "slowlog-log-slower-than"
4) "10000"

慢日志说明:

10000阈值,单位微秒,此处为10毫秒,128慢日志记录保存数量的阈值,此处保存128条。

修改Redis配置文件

比如,把slowlog-log-slower-than设置为1000,slowlog-max-len设置为1200:

slowlog-log-slower-than 1000
slowlog-max-len 1200

使用config set命令动态修改

比如,还是把slowlog-log-slower-than设置为1000,slowlog-max-len设置为1200:

> config set slowlog-log-slower-than 1000
OK
> config set slowlog-max-len 1200
OK
> config rewrite
OK

实践建议

slowlog-max-len配置建议

  • 线上建议调大慢查询列表,记录慢查询时Redis会对长命令做截断操作,并不会占用大量内存。
  • 增大慢查询列表可以减缓慢查询被剔除的可能,例如线上可设置为1000以上。

slowlog-log-slower-than配置建议

  • 默认值超过10毫秒判定为慢查询,需要根据Redis并发量调整该值
  • 由于Redis采用单线程响应命令,对于高流量的场景,如果命令执行时间在1毫秒以上,那么Redis最多可支撑OPS不到1000。因此对于高OPS场景的Redis建议设置为1毫秒

8.3 流水线pipeline

1次网络命令通信模型

经历了1次时间 = 1次网络时间 + 1次命令时间。

批量网络命令通信模型

经历了 n次时间 = n次网络时间 + n次命令时间

什么是流水线?

经历了 1次pipeline(n条命令) = 1次网络时间 + n次命令时间,这大大减少了网络时间的开销,这就是流水线。就是发送一次请求携带很多命令。

案例展示

从北京到上海的一条命令的生命周期有多长?

执行一条命令在redis端可能需要几百微秒,而在网络光纤中传输只花费了13毫秒。

注意:

在执行批量操作而没有使用pipeline功能,会将大量的时间耗费在每一次网络传输的过程上;而使用pipeline后,只需要经过一次网络传输,然后批量在redis端进行命令操作。这会大大提高了效率。

pipeline-Jedis实现

首先,创建springboot项目引入jedis依赖包:

<dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>3.6.0</version>
        </dependency>

没有pipeline的命令执行

@Test
    void contextLoads() {
        Jedis jedis = new Jedis("192.168.66.100",6379);
        //开始时间
        long start = System.currentTimeMillis();
        for ( int i = 0 ; i < 10000 ; i ++ ){
            jedis.hset("hashkey:" + i , "field" + i , "value" + i);
        }
        //结束时间
        long end = System.currentTimeMillis();
        System.out.println("时间差:"+(end-start));
    }

注意:

在不使用pipeline的情况下,使用for循环进行每次一条命令的执行操作,耗费的时间可能达到 1w 条插入命令的耗时为50s。

 使用pipeline

@Test
    void contextLoads() {
        Jedis jedis = new Jedis("192.168.66.100", 6379);
        //开始时间
        long start = System.currentTimeMillis();
        for (int i = 0; i < 100; i++) {  //创建100个pipeline对象
            Pipeline pipeline = jedis.pipelined();
            for (int j = i * 100; j < (i + 1) * 100; j++) {
                pipeline.hset("hashkey:" + j, "field" + j, "value" + j);
            }
            pipeline.syncAndReturnAll();
            //结束时间
        }
        long end = System.currentTimeMillis();
        System.out.println("时间差:" + (end - start));
    }

结论,使用pipeline 技术能提高访问速度。减少网络开销。

九、Redis数据安全

9.1 持久化机制概述

由于Redis的数据都存放在内存中,如果没有配置持久化,Redis重启后数据就全丢失了,于是需要开启Redis的持久化功能,将数据保存到磁盘上,当Redis重启后,可以从磁盘中恢复数据。

持久化机制概述

对于Redis而言,持久化机制是指把内存中的数据存为硬盘文件, 这样当Redis重启或服务器故障时能根据持久化后的硬盘文件恢复数 据。

持久化机制的意义

redis持久化的意义,在于故障恢复。比如部署了一个redis,作为cache缓存,同时也可以保存一些比较重要的数据。

Redis提供了两个不同形式的持久化方式

  • RDB(Redis DataBase)
  • AOF(Append Only File)

9.2 RDB持久化机制

RDB是什么

在指定的时间间隔内将内存的数据集快照写入磁盘,也就是行话讲的快照,它恢复时是将快照文件直接读到内存里。

注意:

将redis内存数据保存到磁盘的文件是二进制压缩文件。

配置dump.rdb文件

RDB保存的文件,在redis.conf中配置文件名称,默认为dump.rdb。

rdb文件的保存路径,也可以修改。默认为Redis启动时命令行所在的目录下

RDB触发机制

  • 通过配置redis.conf文件中的RDB配置来决定触发时间

快照默认配置:

  • save 3600 1:表示3600秒内(一小时)如果至少有1个key的值变化,则保存。
  • save 300 100:表示300秒内(五分钟)如果至少有100个 key 的值变化,则保存。
  • save 60 10000:表示60秒内如果至少有 10000个key的值变化,则保存。

给redis.conf添加新的快照策略,30秒内如果有5次key的变化,则触发快照。配置修改后,需要重启Redis服务。

save 3600 1

save 300 100

save 60 10000

save 30 5

  • 通过执行flushall清除命令,也会触发rdb规则。
  • 通过执行save与bgsave命令也会触发rdb
  1. save
    该命令会阻塞当前Redis服务器,执行save命令期间,Redis不能处理其他命令,直到RDB过程完成为止,不建议使用。
  2. bgsave
    执行该命令时,Redis会在后台异步进行快照操作,快照同时还可以响应客户端请求。

stop-writes-on-bgsave-error

默认值是yes。当Redis无法写入磁盘的话,直接关闭Redis的写操作。

rdbcompression

默认值是yes。对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用LZF算法进行压缩。如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能,但是存储在磁盘上的快照会比较大。

rdbchecksum

默认值是yes。在存储快照后,我们还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能。

恢复数据

只需要将rdb文件放在Redis的启动目录,Redis启动时会自动加载dump.rdb并恢复数据。

优势

  • 适合大规模的数据恢复
  • 对数据完整性和一致性要求不高更适合使用
  • 节省磁盘空间
  • 恢复速度快

劣势

  • 在备份周期在一定间隔时间做一次备份,所以如果Redis意外down掉的话,就会丢失最后一次快照后的所有修改。

9.3 AOF持久化机制

AOF是什么

以日志的形式来记录每个写操作,将Redis执行过的所有写指令记录下来。

AOF默认不开启

可以在redis.conf中配置文件名称,默认为appendonly.aof。

注意:

AOF文件的保存路径,同RDB的路径一致都是在redis文件根目录下,如果AOF和RDB同时启动,Redis默认读取AOF的数据。

开启AOF

设置Yes:修改默认的appendonly no,改为yes

appendonly yes

注意:

修改完需要重启redis服务。

AOF同步频率设置

参数:

  • appendfsync always

始终同步,每次Redis的写入都会立刻记入日志,性能较差但数据完整性比较好。

  • appendfsync everysec

每秒同步,每秒记入日志一次,如果宕机,本秒的数据可能丢失。

  • appendfsync no

redis不主动进行同步,把同步时机交给操作系统。

优势

  • 备份机制更稳健,丢失数据概率更低。
  • 可读的日志文本,通过操作AOF稳健,可以处理误操作。

劣势

  • 比起RDB占用更多的磁盘空间。
  • 恢复备份速度要慢。
  • 每次读写都同步的话,有一定的性能压力。

9.4 企业中该如何选择持久化机制

不要仅仅使用RDB

RDB数据快照文件,都是每隔5分钟,或者更长时间生成一次,这个时候就得接受一旦redis进程宕机,那么会丢失最近5分钟的数据。

也不要仅仅使用AOF

  1. 你通过AOF做冷备,没有RDB做冷备来的恢复速度更快。
  2. RDB每次简单粗暴生成数据快照,更加健壮,可以避免AOF这种复杂的备份和恢复机制的bug。

综合使用AOF和RDB两种持久化机制

用AOF来保证数据不丢失,作为数据恢复的第一选择,用RDB来做不同程度的冷备,在AOF文件都丢失或损坏不可用的时候,还可以使用RDB来进行快速的数据恢复。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
5天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
120 85
|
3天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
22天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
65 5
|
25天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
54 8
|
存储 运维 监控
阿里云的文件存储NAS使用心得
阿里云的文件存储NAS使用心得
391 0
|
存储 弹性计算 固态存储
阿里云服务器1TB存储收费标准(数据盘/对象存储OSS/文件存储NAS)
阿里云服务器1TB存储多少钱?系统盘最大可选到500GB,数据盘选到1TB价格为3655元一年。也可以选择对象存储OSS和文件存储NAS
6388 2
阿里云服务器1TB存储收费标准(数据盘/对象存储OSS/文件存储NAS)
|
存储 弹性计算 人工智能
阿里云文件存储NAS通用型、极速型和文件存储CPFS有什么区别?
阿里云文件存储NAS极速型NAS低时延,适合企业级时延敏感型核心业务;文件存储CPFS拥有高吞吐和高IOPS,适合高性能计算业务;通用型NAS大容量、高性价比、弹性扩展,支持低频介质,适合通用类文件共享业务。
1811 0
阿里云文件存储NAS通用型、极速型和文件存储CPFS有什么区别?
|
5月前
|
存储 NoSQL 文件存储
云计算问题之阿里云文件存储CPFS如何满足大模型智算场景的存储需求
云计算问题之阿里云文件存储CPFS如何满足大模型智算场景的存储需求
111 2
|
存储 弹性计算 并行计算
在高性能计算(HPC)场景下,阿里云存储的文件存储产品的实践
在高性能计算(HPC)场景下,阿里云存储的文件存储产品具有以下的应用需求和实践
462 4
|
存储 弹性计算 监控