利用线程池多线程并发实现TCP两端通信交互,并将服务端设为守护进程(一)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 利用线程池多线程并发实现TCP两端通信交互,并将服务端设为守护进程(一)

实现目标

利用线程池多线程并发实现基于TCP通信的多个客户端与服务端之间的交互,客户端发送数据,服务端接收后处理数据并返回。服务端为守护进程

实现步骤

  1. 封装一个记录日志的类,将程序运行的信息保存到文件
  2. 封装线程类、服务端处理任务类以及将锁进行封装,为方便实现线程池
  3. 实现服务端,使服务端能接收客户端所发来的数据,处理数据后返回。服务端采用多线程并发处理
  4. 封装守护进程方法,使服务端为守护进程
  5. 实现客户端,可以向服务端发送数据,并接收到服务端发送回来的数据

封装日志类

将程序运行的信息保存到指定文件,例如创建套接字成功或者失败等信息。以【状态】【时间】【信息】的格式保存。

状态可分为五种:“DEBUG”,“NORMAL”,“WARNING”,“ERROR”,“FATAL”

日志类保存的信息需带有可变参数

#pragma once
#include <iostream>
#include <string>
#include <cstdarg>
#include <ctime>
#include <unistd.h>
using namespace std;
#define DEBUG 0
#define NORMAL 1
#define WARNING 2
#define ERROR 3
#define FATAL 4
const char *to_levelstr(int level)
{
    switch (level)
    {
    case DEBUG:
        return "DEBUG";
    case NORMAL:
        return "NORMAL";
    case WARNING:
        return "WARNING";
    case ERROR:
        return "ERROR";
    case FATAL:
        return "FATAL";
    default:
        return nullptr;
    }
}
void LogMessage(int level, const char *format, ...)
{
#define NUM 1024
    char logpre[NUM];
    snprintf(logpre, sizeof(logpre), "[%s][%ld][%d]", to_levelstr(level), (long int)time(nullptr), getpid());
    char line[NUM];
    // 可变参数
    va_list arg;
    va_start(arg, format);
    vsnprintf(line, sizeof(line), format, arg);
    // 保存至文件
    FILE* log = fopen("log.txt", "a");
    FILE* err = fopen("log.error", "a");
    if(log && err)
    {
        FILE *curr = nullptr;
        if(level == DEBUG || level == NORMAL || level == WARNING) 
            curr = log;
        if(level == ERROR || level == FATAL) 
            curr = err;
        if(curr) fprintf(curr, "%s%s\n", logpre, line);
        fclose(log);
        fclose(err);
    }
}

封装线程池

封装线程

将线程的创建,等待封装成类的成员函数。不再需要单个的条用线程库接口,以对象的方式创建。

需要注意:在类里面的线程回调方法必须设为static类型,而静态的方法是不能访问类内成员的,因此传给回调函数的参数需要将整个对象传过去,通过对象来获取类内成员

#pragma once
#include <iostream>
#include <string>
#include <cstring>
#include <cassert>
#include <functional>
#include <pthread.h>
typedef std::function<void *(void *)> func_t;
class Thread
{
private:
    // 在类内创建线程,想让线程执行对应的方法,需要将方法设置成为static
    static void *start_routine(void *args) // 类内成员,有缺省参数!
    {
        Thread *_this = static_cast<Thread *>(args);
        return _this->callback();
    }
public:
    // 构造函数里直接生成线程名,利用静态变量从1开始
    Thread()
    {
        char namebuffer[1024];
        snprintf(namebuffer, sizeof namebuffer, "thread-NO.%d", threadnum++);
        _name = namebuffer;
    }
    // 线程启动
    void start(func_t func, void *args = nullptr)
    {
        _func = func;
        _args = args;
        // 由于静态的方法是不能访问类内成员的,
        // 因此传给回调函数的参数需要将整个对象传过去,通过对象来获取类内成员
        // 也就是this指针
        int n = pthread_create(&_tid, nullptr, start_routine, this);
        assert(n == 0);
        (void)n;
    }
    // 线程等待
    void join()
    {
        int n = pthread_join(_tid, nullptr);
        assert(n == 0);
        (void)n;
    }
    ~Thread()
    {
    }
    void *callback()
    {
        return _func(_args);
    }
private:
    std::string _name; // 类名
    func_t _func;      // 线程回调函数
    void *_args;       // 线程回调函数的参数
    pthread_t _tid;    // 线程id
    static int threadnum; // 线程的编号,为生成线程名
};
// static的成员需在类外初始化
int Thread::threadnum = 1;

封装锁

同样的为了不再需要一直调用系统接口,可以将整个方法封装成类,通过类的对象实现加锁过程

#pragma once
#include <iostream>
#include <pthread.h>
// 加锁 解锁
class Mutex
{
public:
    Mutex(pthread_mutex_t *lock_p = nullptr) : _lock_p(lock_p)
    {
    }
    // 加锁
    void lock()
    {
        if (_lock_p)
            pthread_mutex_lock(_lock_p);
    }
    // 解锁
    void unlock()
    {
        if (_lock_p)
            pthread_mutex_unlock(_lock_p);
    }
    ~Mutex()
    {
    }
private:
    pthread_mutex_t *_lock_p;
};
// 锁的类
class LockGuard
{
public:
    LockGuard(pthread_mutex_t *mutex) : _mutex(mutex)
    {
        _mutex.lock(); // 在构造函数中进行加锁
    }
    ~LockGuard()
    {
        _mutex.unlock(); // 在析构函数中进行解锁
    }
private:
    Mutex _mutex;
};

封装线程池

在类里面的线程回调方法必须设为static类型,而静态的方法是不能访问类内成员的,因此传给回调函数的参数需要将整个对象传过去,通过对象来获取类内成员。

线程池需要实现为单例模式:

  1. 第一步就是把构造函数私有,再把拷贝构造和赋值运算符重载delete
  2. 在设置获取单例对象的函数的时候,注意要设置成静态成员函数,因为在获取对象前根本没有对象,无法调用非静态成员函数
  3. 可能会出现多个线程同时申请资源的场景,所以还需要一把锁来保护这块资源,而这把锁也得设置成静态,因为单例模式的函数是静态的
#pragma once
#include "Thread.hpp"
#include "log.hpp"
#include "Lock.hpp"
#include <vector>
#include <queue>
#include <mutex>
#include <pthread.h>
#include <unistd.h>
using namespace std;
// 线程池类定义位于下面,因此属性类想要获取到
// 就必须在前面声明
template <class T>
class ThreadPool;
template <class T>
class ThreadData
{
public:
    ThreadPool<T> *threadpool; // 线程所在的线程池,获取到线程的this指针
    std::string _name;         // 线程的名字
public:
    ThreadData(ThreadPool<T> *tp, const std::string &name) : threadpool(tp), _name(name)
    {
    }
};
template <class T>
class ThreadPool
{
private:
    // 线程最终实现的方法
    static void *handlerTask(void *args)
    {
        ThreadData<T> *td = (ThreadData<T> *)args;
        while (true)
        {
            T t;
            {
                LockGuard lockguard(td->threadpool->mutex());
                while (td->threadpool->isQueueEmpty())
                {
                    td->threadpool->threadWait();
                }
                t = td->threadpool->pop();
            }
            t();
        }
        delete td;
        return nullptr;
    }
    ThreadPool(const int &num = 10) : _num(num)
    {
        pthread_mutex_init(&_mutex, nullptr);
        pthread_cond_init(&_cond, nullptr);
        for (int i = 0; i < _num; i++)
        {
            _threads.push_back(new Thread());
        }
    }
    void operator=(const ThreadPool &) = delete;
    ThreadPool(const ThreadPool &) = delete;
public:
    // 将加锁 解锁 判断任务队列是否为空 和条件变量等待全部封装成类内方法
    // 方便在线程的回调方法中通过对象直接调用
    void lockQueue() { pthread_mutex_lock(&_mutex); }
    void unlockQueue() { pthread_mutex_unlock(&_mutex); }
    bool isQueueEmpty() { return _task_queue.empty(); }
    void threadWait() { pthread_cond_wait(&_cond, &_mutex); }
    // 任务队列删除队头,并返回队头的任务
    T pop()
    {
        T t = _task_queue.front();
        _task_queue.pop();
        return t;
    }
    pthread_mutex_t *mutex()
    {
        return &_mutex;
    }
public:
    // 让每个线程对象调用其启动函数,并将线程辅助类和最终执行的任务方法传入函数中
    // 线程的辅助类对象里包含了线程当前线程池对象,也就是可以
    // 通过辅助类对象可以调用到线程池对象里的成员
    void run()
    {
        for (const auto &t : _threads)
        {
            ThreadData<T> *td = new ThreadData<T>(this, t->threadname());
            t->start(handlerTask, td);
            // 创建成功后打印日志
            LogMessage(DEBUG, "%s start ...", t->threadname().c_str());
        }
    }
    // 往任务队列里插入一个任务
    void push(const T &in)
    {
        LockGuard lockguard(&_mutex);
        _task_queue.push(in);
        pthread_cond_signal(&_cond);
    }
    ~ThreadPool()
    {
        pthread_mutex_destroy(&_mutex);
        pthread_cond_destroy(&_cond);
        for (const auto &t : _threads)
            delete t;
    }
    // 实现单例模式
    static ThreadPool<T> *getInstance()
    {
        if (nullptr == tp)
        {
            _singlock.lock();
            if (nullptr == tp)
            {
                tp = new ThreadPool<T>();
            }
            _singlock.unlock();
        }
        return tp;
    }
private:
    int _num;//线程的数量
    std::vector<Thread *> _threads;//线程组
    std::queue<T> _task_queue;//任务队列
    pthread_mutex_t _mutex;//锁
    pthread_cond_t _cond;//条件变量
    static ThreadPool<T> *tp;
    static std::mutex _singlock;
};
template <class T>
ThreadPool<T> *ThreadPool<T>::tp = nullptr;
template <class T>
std::mutex ThreadPool<T>::_singlock;

TCP通信的接口和注意事项

为了实现TCP版的通信,首先来了解一下相关接口和注意事项

  1. TCP需要在通信前先创建链接,因此在TCP没有链接之前其创建的套接字并不是用来通信的,而是用来监听的。一旦创建链接成功后,才会返回一个用来通信的套接字
  2. TCP时面向字节流的,因此其通信就是往文件上IO,因此不用指定的调用某接口去完成,直接用文件接口读写就可以完成

accept

#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

这就是用来创建链接的接口

参数一为负责监听的套接字

参数二就是socket的结构体

参数三为结构体的大小

返回值,成功创建链接之后会返回一个值,这个值就是负责通信的套接字,也就是后面利用文件通信的文件描述符

TCP

封装任务

因为上述说到TCP是可以直接使用文件操作来完成通信的,那么也就是说其通信根本就用不到其他的成员了,只需要知道一个套接字即可。那么这个方法就可以不放在类内,因为这就是线程最后的执行目的,因此可以将这个任务单独放到一个头文件中。因为线程池是一个模板类,则可以封装一个任务类。

#pragma once
#include <iostream>
#include <string>
#include <cstdio>
#include <functional>
#include "log.hpp"
// TCP的通信
// 线程的最终执行方法
void ServerIO(int sock)
{
    char buffer[1024];
    while (true)
    {
        ssize_t n = read(sock, buffer, sizeof(buffer) - 1);
        if (n > 0)
        {
            // read
            buffer[n] = 0;
            std::cout << "recv message: " << buffer << std::endl;
            // write
            std::string outbuffer = buffer;
            outbuffer += " server[echo]";
            write(sock, outbuffer.c_str(), outbuffer.size());
        }
        else if (n == 0)
        {
            // 代表client退出
            LogMessage(NORMAL, "client quit, me too!");
            break;
        }
    }
    close(sock);
}
// 任务类
// 为了最终执行的方法而服务
class Task
{
    using func_t = std::function<void(int)>;
public:
    Task()
    {
    }
    Task(int sock, func_t func)
        : _sock(sock), _callback(func)
    {
    }
    void operator()()
    {
        _callback(_sock);
    }
private:
    int _sock; // 通信套接字
    func_t _callback;
};


相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
135 0
|
7月前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
2月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
5月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
243 67
|
3月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
231 5
|
6月前
|
SQL 监控 网络协议
YashanDB进程线程体系
YashanDB进程线程体系
|
7月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
225 20
|
7月前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
7月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
337 0
|
4月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
187 0