[C++] C++入门第二篇 -- 引用& -- 内联函数inline -- auto+for(上)

简介: [C++] C++入门第二篇 -- 引用& -- 内联函数inline -- auto+for(上)

1、引用 -- &

1.1 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。
比如:李逵,在家称为“铁牛”,江湖上人称“黑旋风”。同一个人,只不过是两个名字。


语法: 类型& 引用变量名(对象名) = 引用实体;


&是引用的符号,在C语言中&也表示取地址,还表示按位与,本质是运算符重载,运算符重载,一个符号会根据不同的场景,编译器会自己确定含义。


我们举例来看看&:

int main()
{
  int a = 10;
  int& b = a;//定义引用类型
  int& c = b;
  cout << "a = " << a << ",地址:" << &a << endl;
  cout << "b = " << b << ",地址:" << &b << endl;
  cout << "c = " << c << ",地址:" << &c << endl;
  return 0;
}

运行结果:

我们根据运行结果可以知道,a,b,c 指的是同一块内存空间。

注意:引用类型必须和引用实体是同种类型的。

1.2 引用特性

引用有三个特性:


1. 引用在定义时必须初始化;

2. 一个变量可以有多个引用;

3. 引用一旦引用一个实体,再不能引用其他实体。


其实前两条我们理解记忆就好了:


1、引用是起别名,要有对象我们才能再去起别名,不存在对象给谁起别名;


2、一个小孩,妈妈可以叫他宝贝,爸爸可以叫他贝贝,爷爷也可以叫他狗蛋是吧,所以一个对象可以有多个别名(引用)。


我们对这三个用代码写一下看看:  



1.3 常引用 -- 权限问题

我们用代码来看:

int main()
{
  //1.权限放大
  const int x = 10;
  int& a = x;
  return 0;
}

我们来看看编译会不会出错:

这是因为,在引用中,对原变量的引用权限不能放大。

在这段代码中,x是const修饰的常变量,只能读取,不能修改。而a是int类型,针对类型来说,它是可以修改的。因此这就是权限放大,这是错误的。

我们继续往下看:

int main()
{
  //2.权限平移
  const int i = 20;
  const int& j = i;
  //3.权限缩小
  int z = 30;
  const int& y = z;
  return 0;
}

我们看结果:

对于权限的平移,权限的缩小都是没有问题的,由此我们可以看出:在引用中,对于权限来说,平移、缩小都是没有问题的,唯独要注意的是:权限不能放大。

特殊:

我们再往下看:


直接能看出来,对于引用来说不能初始化为常量,这也算是权限的放大。

改为const修饰就不会报错了。

最后看一个:

引用的时候,不同的类型直接引用是会出错的,本质原因是int类型赋给double类型存在隐式类型转换,生成一个临时变量(具有常性),因此需要加const修饰。

1.4 引用的使用场景

1.4.1 做参数

void Swap(int& left, int& right)
{
  int tmp = left;
  left = right;
  right = tmp;
}

在C语言的时候,我们交换两个数我们使用指针来交换,而C++我们就可以使用引用来交换。

我们来测试一下:


1.4.2 做返回值

我们先来看一段代码:

int func()
{
  int n = 0;
  n++;
  return n;
}
int main()
{
  cout << func() << endl;
  return 0;
}

运行结果:

这是是一个传值返回,我们来深究传值返回的过程:

传值返回的时候会产生一个临时变量,跟传参一样,临时变量会先把n拷贝下来,然后再拷贝给函数调用,传值返回的类型其实是临时变量的类型,那么为什么要产生一个临时变量呢,直接返回n不香吗?


这是因为在函数调用的时候,功能函数会建立函数栈帧,而功能函数的每一条语句执行完后,函数栈帧会自动销毁,这时功能函数的整个函数体,包括函数体里的所有内容都随之销毁,返回的变量生命周期也就结束了。但是编译器在这里产生一个临时变量,要是小就用寄存器存储,将返回值拷贝给临时变量,再又临时变量拷贝给调用的函数,这就不会出错了。


有了上面的理解,我们再来看一段代码:


int& func()
{
  int n = 0;
  n++;
  return n;
}
int main()
{
  int& ret = func();
  cout << ret << endl;
  cout << ret << endl;
  return 0;
}

运行结果:

此代码的返回值是int&,而传引用是给变量起别名,而在这里返回的是别名,调用完func函数,栈帧销毁了,但是空间还在(类似于订酒店,我退房了,但是房间还在,别人还可以使用),给n起了别名之后再去打印,还是操作的n的那块空间,那块空间可能被清理的,也有可能还没有清理,如果没清理,那块空间的值还是1,如果被清理了可能就是其他值了。

注意

我们看上面的代码,在第二次打印的时候,n的值明显就不正确了,出了函数作用域,func函数被销毁了,我们再去访问那块空间的时候,就是非法访问了,这就是引用的一种野指针。


因此这里要注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。

1.5 传值、传引用的效率比较

我们用代码来测试一下:

#include <time.h>
struct A 
{ 
  int a[10000]; 
};
void TestFunc1(A a) {}
void TestFunc2(A& a) {}
void TestRefAndValue()
{
  A a;
  // 以值作为函数参数
  size_t begin1 = clock();
  for (size_t i = 0; i < 10000; ++i)
    TestFunc1(a);
  size_t end1 = clock();
  // 以引用作为函数参数
  size_t begin2 = clock();
  for (size_t i = 0; i < 10000; ++i)
    TestFunc2(a);
  size_t end2 = clock();
  // 分别计算两个函数运行结束后的时间
  cout << "TestFunc1 time:" << end1 - begin1 << endl;
  cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{
  TestRefAndValue();
  return 0;
}

运行结果:


#include <time.h>
struct A { int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A& TestFunc2() { return a; }
void TestReturnByRefOrValue()
{
  // 以值作为函数的返回值类型
  size_t begin1 = clock();
  for (size_t i = 0; i < 100000; ++i)
    TestFunc1();
  size_t end1 = clock();
  // 以引用作为函数的返回值类型
  size_t begin2 = clock();
  for (size_t i = 0; i < 100000; ++i)
    TestFunc2();
  size_t end2 = clock();
  // 计算两个函数运算完成之后的时间
  cout << "TestFunc1 time:" << end1 - begin1 << endl;
  cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{
  TestReturnByRefOrValue();
  return 0;
}

运行结果:

我们看到无论是传参还是返回,传引用的效率明显要高于传值。


原因: 以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

1.6 引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{
    int a = 10;
    int& ra = a;
    ra = 20;
    int* pa = &a;
    *pa = 20;
    return 0;
}

我们来看引用和反汇编代码的对比:




引用和指针的不同点:


1. 引用概念上定义一个变量的别名,指针存储一个变量地址。

2. 引用在定义时必须初始化,指针没有要求

3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体

4. 没有NULL引用,但有NULL指针

5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)

6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小

7. 有多级指针,但是没有多级引用

8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理

9. 引用比指针使用起来相对更安全



相关文章
|
1月前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
5月前
|
存储 安全 编译器
【C++打怪之路Lv1】-- 入门二级
【C++打怪之路Lv1】-- 入门二级
53 0
|
5月前
|
自然语言处理 编译器 C语言
【C++打怪之路Lv1】-- C++开篇(入门)
【C++打怪之路Lv1】-- C++开篇(入门)
60 0
|
5月前
|
分布式计算 Java 编译器
【C++入门(下)】—— 我与C++的不解之缘(二)
【C++入门(下)】—— 我与C++的不解之缘(二)
|
1月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
8天前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
37 16
|
12天前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
55 6
|
1月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
1月前
|
安全 编译器 C语言
【C++篇】深度解析类与对象(中)
在上一篇博客中,我们学习了C++类与对象的基础内容。这一次,我们将深入探讨C++类的关键特性,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载、以及取地址运算符的重载。这些内容是理解面向对象编程的关键,也帮助我们更好地掌握C++内存管理的细节和编码的高级技巧。

热门文章

最新文章