由于外部罚函数法随着罚因子的增大,增广目标函数的Hesse矩阵条件变得越来越坏,从而导致在实际计算中,数值计算的稳定性变得越来越差,难以精确求解,乘子法是在约束问题的Lagrange函数中加入相应的惩罚,使得在求解系列无约束问题时,罚因子不必趋于无穷大就能求到约束问题的最优解,而且数值计算的稳定性也能得到很好的保证。理论与实践皆表明,乘子法优于外部罚函数法。
等式约束的情形
考虑等式约束问题,将其写成向量形式为:
由此可见,约束问题与下述问题等价:
使用外部罚函数法,其增广目标函数为:
一般约束情形
对于一般约束问题
仿照前面的推导,可得增广目标函数为:
乘子迭代公式为:
我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!