双边滤波原理
双边滤波(Bilateral filter)是一种非线性的滤波方法,本质是基于高斯滤波,目的是解决高斯滤波造成的边缘模糊。结合图像的空间邻近度和像素值相似度的一种折处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
双边滤波器的好处是可以做边缘保存(edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。
双边滤波器的输出像素依赖于当前被卷积像素的邻域。i ii和j jj是当前被卷积像素的坐标点,k kk和l ll是领域像素的坐标点。双边滤波公式如下所示:
加权系数w ww由定义域核和值域核决定,是它们的乘积。定义域核是高斯核,如下公式所示:
而值域核就是用于“推断”是否是边缘点的方法,如下公式所示:
值域核的大小取决于被卷积像素的灰度值和邻域像素的灰度值的差。边缘有较大灰度变化时,则会生成较小的权值,与被卷积像素的灰度值类似的区域会生成较大的权值。
相乘就得到加权系数w ww,如下公式所示:
双边滤波的原理示意图如下图所示:
MatLab代码
clear all;close all;clc; img=imread('boy_noisy.gif'); img=mat2gray(img); [m n]=size(img); r=15; %模板半径 imgn=zeros(m+2*r+1,n+2*r+1); imgn(r+1:m+r,r+1:n+r)=img; imgn(1:r,r+1:n+r)=img(1:r,1:n); %扩展上边界 imgn(1:m+r,n+r+1:n+2*r+1)=imgn(1:m+r,n:n+r); %扩展右边界 imgn(m+r+1:m+2*r+1,r+1:n+2*r+1)=imgn(m:m+r,r+1:n+2*r+1); %扩展下边界 imgn(1:m+2*r+1,1:r)=imgn(1:m+2*r+1,r+1:2*r); %扩展左边界 sigma_d=7; sigma_r=0.2; [x,y] = meshgrid(-r:r,-r:r); w1=exp(-(x.^2+y.^2)/(2*sigma_d^2)); %以距离作为自变量高斯滤波器 for i=r+1:m+r for j=r+1:n+r w2=exp(-(imgn(i-r:i+r,j-r:j+r)-imgn(i,j)).^2/(2*sigma_r^2)); %以周围和当前像素灰度差值作为自变量的高斯滤波器 w=w1.*w2; s=imgn(i-r:i+r,j-r:j+r).*w; imgn(i,j)=sum(sum(s))/sum(sum(w)); end end subplot(1,2,1);imshow(img);title('Origin image'); %显示原始图像 subplot(1,2,2);imshow(mat2gray(imgn(r+1:m+r,r+1:n+r)));title('Bilateral_filter');%显示滤波后的图像
实验结果
完整实验代码,公众号后台回复:数字图像作业一。
我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!