贝塞尔曲线原理(简单阐述)

简介: 原文:贝塞尔曲线原理(简单阐述)原理和简单推导(以三阶为例): 设P0、P02、P2是一条抛物线上顺序三个不同的点。过P0和P2点的两切线交于P1点,在P02点的切线交P0P1和P2P1于P01和P11,则如下比例成立: 这是所谓抛物线的三切线定理。
原文: 贝塞尔曲线原理(简单阐述)

原理和简单推导(以三阶为例):

P0P02P2是一条抛物线上顺序三个不同的点。过P0P2点的两切线交于P1点,在P02点的切线交P0P1P2P1P01P11,则如下比例成立:

这是所谓抛物线的三切线定理。

 

P0P2固定,引入参数t,令上述比值为t:(1-t),即有:


t从0变到1,第一、二式就分别表示控制二边形的第一、二条边,它们是两条一次Bezier曲线。将一、二式代入第三式得:

 

t从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。

并且表明:

二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合

依次类推,

由四个控制点定义的三次Bezier曲线P03可被定义为分别由(P0,P1,P2)和(P1,P2,P3)确定的二条二次Bezier曲线的线性组合,由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1P1n-1的线性组合:

由此得到Bezier曲线的递推计算公式

这就是这就是de Casteljau算法,可以简单阐述三阶贝塞尔曲线原理。

 

下面是总结:转自http://blog.csdn.net/tianhai110/article/details/2203572

Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线。 曲线定义:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。

以下公式中:B(t)为t时间下 点的坐标;

P0为起点,Pn为终点,Pi为控制点

一阶贝塞尔曲线(线段):

意义:由 P0 至 P1 的连续点, 描述的一条线段

二阶贝塞尔曲线(抛物线):

原理:由 P0 至 P1 的连续点 Q0,描述一条线段。
      由 P1 至 P2 的连续点 Q1,描述一条线段。
      由 Q0 至 Q1 的连续点 B(t),描述一条二次贝塞尔曲线。

经验:P1-P0为曲线在P0处的切线。

三阶贝塞尔曲线:

通用公式:

高阶贝塞尔曲线:

4阶曲线:

5阶曲线:

 
目录
相关文章
这一篇让你彻底搞懂贝塞尔曲线
贝塞尔曲线不懂画?不知道怎么回事?看这一篇就够了!用图形,点曲线运动图和公式推导,让你彻底搞懂贝塞尔曲线的运行原理!
2046 0
这一篇让你彻底搞懂贝塞尔曲线
|
3月前
|
数据挖掘 Python
【Python数据分析】假设检验的基本思想、原理和步骤
文章详细介绍了假设检验的基本思想、原理、可能犯的错误类型、基本步骤以及在不同总体情况下的检验方法,阐述了如何在Python中应用假设检验,并通过P值来判断假设的可靠性。
49 1
|
5月前
|
数据可视化 算法 大数据
深入解析高斯过程:数学理论、重要概念和直观可视化全解
这篇文章探讨了高斯过程作为解决小数据问题的工具,介绍了多元高斯分布的基础和其边缘及条件分布的性质。文章通过线性回归与维度诅咒的问题引出高斯过程,展示如何使用高斯过程克服参数爆炸的问题。作者通过数学公式和可视化解释了高斯过程的理论,并使用Python的GPy库展示了在一维和多维数据上的高斯过程回归应用。高斯过程在数据稀疏时提供了一种有效的方法,但计算成本限制了其在大数据集上的应用。
216 1
|
机器学习/深度学习 决策智能
双边滤波方法原理与代码实践(附完整代码)
双边滤波方法原理与代码实践(附完整代码)
604 0
|
前端开发
前端知识案例学习4-毛玻璃效果代码实现局部
前端知识案例学习4-毛玻璃效果代码实现局部
84 0
|
机器学习/深度学习 算法 决策智能
模拟退火算法从原理到实战【基础篇】
  模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
1841 0
|
数据可视化 数据挖掘 图形学
|
XML 缓存 前端开发
和大家谈谈我为什么选择图形这条路(一)
前端图形 从图形的角度带你领略前端的美 59篇原创内容 公众号 图形学这个领域目前来看是很好玩也很有前景的一个方向,当我们了解它的基础知识,get到它好玩地方的时候,我们可以很轻松延伸到可视化这一领域进行拓展。本文会尽量以很通俗很详细的方式来向大家介绍,希望读者有所收获。
和大家谈谈我为什么选择图形这条路(一)
|
前端开发 数据可视化 JavaScript
和大家谈谈我为什么选择图形这条路(二)
数学基础 img 1.1 坐标系与向量之以canvas为例实现坐标系的转换 这里首先我要先从对坐标系进行转换进行讲起,那为什么我要先讲坐标系的转换问题:因为转换坐标系对于图形学绘制而言,实在太重要了,后续所有图形的绘制都要用到这个思想,具体为什么我们先从一个之前前面看到的图形讲起: 首先经过一顿坐标点换算,我们得出每个点具体的坐标(这里我用了一个Rough.js的库,绘制一个手绘风格的图像),最终算出山顶的坐标就是 (-80, 100) 和 (80, 100),山脚的坐标就是 (-180, 0)、(20, 0)、(-20, 0)、(180, 0),太阳的中心点的坐标就是 (0, 150)。 i
和大家谈谈我为什么选择图形这条路(二)
|
API 数据安全/隐私保护 iOS开发
核心动画详细阐述(下)
核心动画详细阐述(下)
159 0
核心动画详细阐述(下)