基本思想
将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
图解
代码实现
public class HeapSort { public static void main(String[] args) { // int[] arr = {5, 1, 7, 3, 1, 6, 9, 4}; int[] arr = {16, 7, 3, 20, 17, 8}; heapSort(arr); for (int i : arr) { System.out.print(i + " "); } } /** * 创建堆, * @param arr 待排序列 */ private static void heapSort(int[] arr) { //创建堆 for (int i = (arr.length - 1) / 2; i >= 0; i--) { //从第一个非叶子结点从下至上,从右至左调整结构 adjustHeap(arr, i, arr.length); } //调整堆结构+交换堆顶元素与末尾元素 for (int i = arr.length - 1; i > 0; i--) { //将堆顶元素与末尾元素进行交换 int temp = arr[i]; arr[i] = arr[0]; arr[0] = temp; //重新对堆进行调整 adjustHeap(arr, 0, i); } } /** * 调整堆 * @param arr 待排序列 * @param parent 父节点 * @param length 待排序列尾元素索引 */ private static void adjustHeap(int[] arr, int parent, int length) { //将temp作为父节点 int temp = arr[parent]; //左孩子 int lChild = 2 * parent + 1; while (lChild < length) { //右孩子 int rChild = lChild + 1; // 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点 if (rChild < length && arr[lChild] < arr[rChild]) { lChild++; } // 如果父结点的值已经大于孩子结点的值,则直接结束 if (temp >= arr[lChild]) { break; } // 把孩子结点的值赋给父结点 arr[parent] = arr[lChild]; //选取孩子结点的左孩子结点,继续向下筛选 parent = lChild; lChild = 2 * lChild + 1; } arr[parent] = temp; } }