编排系统K8S Ingress-nginx源码解析

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
全局流量管理 GTM,标准版 1个月
简介: 上篇文章介绍了Ingress-nginx的基本架构原理,具体可参考: 编排系统K8S Ingress-nginx介绍 本篇重点以源码为基础,深入讲解 Ingress-nginx的内部工作流以及整体工作模式。


      上篇文章介绍了Ingress-nginx的基本架构原理,具体可参考:

      编排系统K8S Ingress-nginx介绍

     本篇重点以源码为基础,深入讲解 Ingress-nginx的内部工作流以及整体工作模式。先来张工作流图:


      如上述工作流图所述:Ingress-nginx 模块在运行时主要包括三个主体:NginxController、Store、SyncQueue。其中:

      Store(协程)模块主要负责从 kubernetes API Server 收集运行时信息,感知各类资源(如 Ingress、Service等)的变化,并及时将更新事件消息(event)写入一个环形管道。                                                          SyncQueue(协程)定期扫描 syncQueue 队列,发现有任务就执行更新操作,即借助 Store 完成最新运行数据的拉取,然后根据一定的规则产生新的 nginx 配置,(有些更新必须 reload,就本地写入新配置,执行 reload),然后执行动态更新操作,即构造 POST 数据,向本地 Nginx Lua 服务模块发送 post 请求,以实现配置更新。

      NginxController(主程)作为中间的联系者,监听 updateChannel,一旦收到配置更新事件,就向同步队列 syncQueue 里写入一个更新请求。

     下面我们看下相关源码解析:[因篇幅有限,仅列出核心的部分]

整个流程入口为main()函数,以下为~/nginx/main.go源码


func main() {
  ...
  ngx := controller.NewNGINXController(conf, mc, fs)
  ...
  ngx.Start()
}

在 main 函数中,程序首先构造了 NginxController,并执行了其 Start 方法,启动了 Controller 主程序。

     关于ngx.Start(),我们可以追溯到internal/ingress/controller/nginx.go#Start(),具体:


func (n *NGINXController) Start() {
  ...
  n.store.Run(n.stopCh)
  ...
  go n.syncQueue.Run(time.Second, n.stopCh)
  ...
  for {
    select {
    ...
    case event := <-n.updateCh.Out():
      if n.isShuttingDown {
        break
      }
      if evt, ok := event.(store.Event); ok {
        if evt.Type == store.ConfigurationEvent {
          n.syncQueue.EnqueueTask(task.GetDummyObject("configmap-change"))
          continue
        }
        n.syncQueue.EnqueueSkippableTask(evt.Obj)
      } 
    ...
  }
}

     NginxController 首先启动了 Store 协程,然后启动了 syncQueue 协程,最后监听 updateCh,当收到事件后,经过相关条件判断然后向 syncQueue 写入了一个 task。

      关于Store 协程,跟踪到 internal/ingress/controller/store/store.go#Run(),具体:


func (s k8sStore) Run(stopCh chan struct{}) {
  s.informers.Run(stopCh)
  ...
}

通过代码我们可以看到,此方法继续调用了 informer 的 Run 方法,继续跟踪,可看到如下:


// Run initiates the synchronization of the informers against the API server.
func (i *Informer) Run(stopCh chan struct{}) {
  go i.Endpoint.Run(stopCh)
  go i.Service.Run(stopCh)
  go i.Secret.Run(stopCh)
  go i.ConfigMap.Run(stopCh)
  ...
  go i.Ingress.Run(stopCh)
  ...
}

   informer 的 Run 方法,会起更多的协程,去监听不同资源的变化,包括 Endpoint、Service、Secret、ConfigMap、Ingress等等。以 Ingress 为例,在其定义处,可以找到 New() :


// New creates a new object store to be used in the ingress controller
func New(... updateCh *channels.RingChannel ...) Storer {
  ...
  store.informers.Ingress = infFactory.Extensions().V1beta1().Ingresses().Informer()
  ...
  ingEventHandler := cache.ResourceEventHandlerFuncs{
    AddFunc: func(obj interface{}) {
      ...
      updateCh.In() <- Event{
        Type: CreateEvent,
        Obj:  obj,
      }
    },
    DeleteFunc: func(obj interface{}) {
      ...
      updateCh.In() <- Event{
        Type: DeleteEvent,
        Obj:  obj,
      }
    },
    UpdateFunc: func(old, cur interface{}) {
      ...
      updateCh.In() <- Event{
        Type: UpdateEvent,
        Obj:  cur,
      }
    },
  }
...
  store.informers.Ingress.AddEventHandler(ingEventHandler)
  ...
}

      可以看出,Ingress 协程定义了监听 ingress 信息的 informer 对象,并注册了相关事件的回调方法,在回调方法内向之前提到的 updateCh 写入了事件,进而也就达到了当资源变化时通知 Controller 主程向同步队列写入task的目的。

    关于syncQueue,可追溯到internal/ingress/controller/nginx.go # NewNGINX-Controller()


// NewNGINXController creates a new NGINX Ingress controller.
func NewNGINXController(config *Configuration, mc metric.Collector, fs file.Filesystem) *NGINXController {
  ...
  n.syncQueue = task.NewTaskQueue(n.syncIngress)
  ...
}



       队列的创建是通过 task.NewTaskQueue() 完成的,而且传入了关键的处理函数 n.syncIngress。继续跟踪到 internal/task/queue.go#NewTaskQueue():


// NewTaskQueue creates a new task queue with the given sync function.
// The sync function is called for every element inserted into the queue.
func NewTaskQueue(syncFn func(interface{}) error) *Queue {
  return NewCustomTaskQueue(syncFn, nil)
}
// NewCustomTaskQueue ...
func NewCustomTaskQueue(syncFn func(interface{}) error, fn func(interface{}) (interface{}, error)) *Queue {
  q := &Queue{
    queue:      workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter()),
    sync:       syncFn,
    workerDone: make(chan bool),
    fn:         fn,
  }
  ...
  return q
}

       可以看出,传入的处理函数 n.syncIngress 被赋值给 Queue 的 sync 属性了。实际上,syncQueue 的执行就是在反复执行该方法以消费队列里的元素。有关Queue 的 Run 定义可以追溯至:


// Run starts processing elements in the queue
func (t *Queue) Run(period time.Duration, stopCh <-chan struct{}) {
  wait.Until(t.worker, period, stopCh)
}
// worker processes work in the queue through sync.
func (t *Queue) worker() {
  for {
    key, quit := t.queue.Get()
    ...
    if err := t.sync(key); err != nil {
      t.queue.AddRateLimited(Element{
        Key:       item.Key,
        Timestamp: time.Now().UnixNano(),
      })
    } else {
      t.queue.Forget(key)
      t.lastSync = ts
    }
    t.queue.Done(key)
  }
}


      同步队列协程的主要工作就是定期取出队列里的元素,并利用传入的 n.syncIngress (即 t.sync(key))方法处理队列里的元素。n.syncIngress 方法的定义在 internal/-ingress-/controller/controller.go#syncIngress():


// syncIngress collects all the pieces required to assemble the NGINX
// configuration file and passes the resulting data structures to the backend
// (OnUpdate) when a reload is deemed necessary.
func (n *NGINXController) syncIngress(interface{}) error {
  // 获取最新配置信息
  ....
  // 构造 nginx 配置
  pcfg := &ingress.Configuration{
    Backends:              upstreams,
    Servers:               servers,
    PassthroughBackends:   passUpstreams,
    BackendConfigChecksum: n.store.GetBackendConfiguration().Checksum,
  }
  ...
  // 不能避免 reload,就执行 reload 更新配置
  if !n.IsDynamicConfigurationEnough(pcfg) {
    ...
    err := n.OnUpdate(*pcfg)
    ...
  }
  ...
  // 动态更新配置
  err := wait.ExponentialBackoff(retry, func() (bool, error) {
    err := configureDynamically(pcfg, n.cfg.ListenPorts.Status, n.cfg.DynamicCertificatesEnabled)
    ...
  })
  ...
}

      关于动态更新的工作机制,函数定义位于 internal/ingress/controller/nginx.go#-configureDynamically():


/ configureDynamically encodes new Backends in JSON format and POSTs the
// payload to an internal HTTP endpoint handled by Lua.
func configureDynamically(pcfg *ingress.Configuration, port int, isDynamicCertificatesEnabled bool) error {
  backends := make([]*ingress.Backend, len(pcfg.Backends))
  for i, backend := range pcfg.Backends {
    var service *apiv1.Service
    if backend.Service != nil {
      service = &apiv1.Service{Spec: backend.Service.Spec}
    }
    luaBackend := &ingress.Backend{
      Name:                 backend.Name,
      Port:                 backend.Port,
      SSLPassthrough:       backend.SSLPassthrough,
      SessionAffinity:      backend.SessionAffinity,
      UpstreamHashBy:       backend.UpstreamHashBy,
      LoadBalancing:        backend.LoadBalancing,
      Service:              service,
      NoServer:             backend.NoServer,
      TrafficShapingPolicy: backend.TrafficShapingPolicy,
      AlternativeBackends:  backend.AlternativeBackends,
    }
    var endpoints []ingress.Endpoint
    for _, endpoint := range backend.Endpoints {
          endpoints = append(endpoints, ingress.Endpoint{
        Address: endpoint.Address,
        Port:    endpoint.Port,
      })
    }
    luaBackend.Endpoints = endpoints
    backends[i] = luaBackend
  }
  url := fmt.Sprintf("http://localhost:%d/configuration/backends", port)
  err := post(url, backends)
  if err != nil {
    return err
  }
  if isDynamicCertificatesEnabled {
    err = configureCertificates(pcfg, port)
    if err != nil {
      return err
    }
  }
  return nil
}

      结合源码:通过请求 Lua 后端来实现动态配置更新的,使用的是典型的 http post 方法。后续的动态更新动作转交给 Lua 模块负责。因为 Lua 以模块形式嵌入 Nginx 运行,因此其更新配置也就在一定程度上避免了 reload。      

      至于reload 配置的函数定义,可参考

internal/ingress/controller/nginx.go#OnUpdate-()。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2天前
|
应用服务中间件 网络安全 PHP
八个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
Nginx 是一个高效的 HTTP 服务器和反向代理,擅长处理静态资源、负载均衡和网关代理等任务。其配置主要通过 `nginx.conf` 文件完成,但复杂设置可能导致错误。本文介绍了几个开源的 Nginx 可视化配置系统,如 Nginx UI、VeryNginx、OpenPanel、Ajenti、Schenkd nginx-ui、EasyEngine、CapRover 和 NGINX Agent,帮助简化和安全地管理 Nginx 实例。
|
26天前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
41 3
|
8天前
|
机器学习/深度学习 Android开发 UED
移动应用与系统:从开发到优化的全面解析
【10月更文挑战第25天】 在数字化时代,移动应用已成为我们生活的重要组成部分。本文将深入探讨移动应用的开发过程、移动操作系统的角色,以及如何对移动应用进行优化以提高用户体验和性能。我们将通过分析具体案例,揭示移动应用成功的关键因素,并提供实用的开发和优化策略。
|
1月前
|
域名解析 缓存 网络协议
【网络】DNS,域名解析系统
【网络】DNS,域名解析系统
83 1
|
22天前
|
域名解析 缓存 网络协议
Windows系统云服务器自定义域名解析导致网站无法访问怎么解决?
Windows系统云服务器自定义域名解析导致网站无法访问怎么解决?
|
1月前
|
监控 数据可视化 搜索推荐
医院绩效核算系统源码开发,平衡计分卡在绩效管理中的应用解析
医院绩效核算系统是专为医疗机构设计的系统,通过科学方法评估科室和员工绩效,与HIS系统集成,确保数据准确实时。核心功能包括战略导向配置、现代技术架构、自动数据集成、灵活绩效核算机制及模块化管理,支持RBRVS、DRGs等多种考核方法,确保全面科学评估。采用平衡计分卡等工具,实现多维度绩效管理,促进组织持续改进与发展。
|
27天前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
62 0
|
28天前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
49 0
|
28天前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
58 0
|
28天前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
72 0

推荐镜像

更多