【项目设计】高并发内存池—tcmalloc核心框架学习(一)

简介: 【项目设计】高并发内存池—tcmalloc核心框架学习

一、项目介绍

本项目实现的是一个高并发的内存池,其原型是Google的开源项目tcmalloc,tcmalloc全称Thread-Caching Malloc,即线程缓存malloc,实现了高效的多线程内存管理,用于替换系统的内存分配相关函数malloc和free


tcmalloc的知名度也是非常高的,不少公司都在用它,比如Go语言就直接用它做了内存分配器


本项目是将tcmalloc最核心的框架简化后拿出来,模拟实现出一个高并发内存池,目的是为了学习tcamlloc的精华


该项目主要涉及C/C++、数据结构(链表、哈希桶)、操作系统内存管理、单例模式、多线程、互斥锁等方面的技术


二、内存池的初步认识

2.1 池化技术

池化技术,就是程序先向系统申请过量的资源,然后自行进行管理,以备不时之需


之所以要申请过量的资源,是因为申请和释放资源都有较大的开销,不如提前申请一些资源放入"池"中,当需要资源时则可以直接从"池"中获取,不需要时就将该资源重新放回"池"中即可。这样使用时就会变得较为快捷,可以达到提高程序的运行效率的目的


在计算机中,有很多地方都使用了"池"这种技术,如连接池、线程池、对象池等。以服务器上的线程池为例,其主要思想就是:先启动若干数量的线程,让它们处于睡眠状态。当接收到客户端的请求时,再唤醒池中某个睡眠的线程,让它来处理客户端的请求,当处理完这个请求后,线程又进入睡眠状态


2.2 内存池

内存池是指程序预先向操作系统申请一块足够大的内存.此后,当程序中需要申请内存的时候,不需直接向操作系统申请,而是直接从内存池中获取;同理,当释放内存的时候,并不是真正将内存返回给操作系统,而是将内存返回给内存池。当程序退出时(或某个特定时间),内存池才将之前申请的内存真正释放


内存池所解决问题


内存池主要解决的就是效率的问题,其能够避免程序频繁的向系统申请和释放内存。其次,内存池作为系统的内存分配器,还需要尝试解决内存碎片的问题


内存碎片分为内部碎片和外部碎片:


外部碎片是一些空闲的小块内存区域,由于这些内存空间不连续,以至于合计的内存足够,但是不能满足一些内存分配申请需求


内部碎片是由于一些对齐的需求,导致分配出去的空间中一些内存无法被利用


注意: 内存池尝试解决的是外部碎片的问题,同时也尽可能的减少内部碎片的产生


2.3 malloc

C语言中动态申请内存并不是直接向堆申请的,而是通过malloc函数去申请的;C++中的new实际上也是封装了malloc函数


申请内存块时是先调用malloc,malloc再去向操作系统申请内存。malloc实际就是一个内存池,malloc相当于向操作系统"批发"了一块较大的内存空间,然后"零售"给程序用,当全部"售完"或程序有大量的内存需求时,再根据实际需求向操作系统"进货"

960eaff68b9549b0abbb03ecae9bfe35.png



malloc的实现方式有很多种,一般情况下不同编译器平台用的是不同的。比如Windows的VS系列中的malloc就是微软自行实现的,而Linux下的gcc用的是glibc中的ptmalloc


三、定长内存池

malloc其实是一个通用的内存池,在什么场景下都适用,但也意味着malloc在什么场景下都不会具有很高的性能,因为malloc并不是针对某种场景专门设计的


定长内存池则是针对固定大小内存块的申请和释放的内存池,由于定长内存池只需要支持固定大小内存块的申请和释放,因此性能可以达到极致,并且在实现定长内存池时不需要考虑内存碎片等问题,因为申请/释放的都是固定大小的内存块


通过实现定长内存池可以熟悉对简单内存池的控制,其次,这个定长内存池也会在后面会作为高并发内存池的一个基础组件(代替new操作符)


实现定长


在实现定长内存池时要做到"定长"有许多方式,比如可以使用非类型模板参数,使得在该内存池中申请到的对象的大小都是N

template<size_t N>
class ObjectPool
{};

定长内存池也可以被称为"对象池"。在创建对象池时,对象池可以根据传入的对象类型的大小来实现"定长",比如创建定长内存池时传入对象类型int,那么该内存池就只支持 sizeof(int) 字节大小内存的申请和释放

template<class T>
class ObjectPool
{};

向堆区申请内存


既然是内存池,那么首先得向系统申请一块内存空间,然后对其进行管理。要想直接向堆申请内存空间,在Windows下可以调用VirtualAlloc()系统接口;在Linux下可以调用brk()或mmap()系统接口

#ifdef WIN32
  #include <windows.h>
#else
  #include <sys/mman.h>
  #include <unistd.h>
#endif
inline static void* SystemAlloc(size_t kpage)//按页申请内存
{
#ifdef _WIN32
  void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
  //Linux下brk mmap等
#endif
  if (ptr == nullptr) throw std::bad_alloc();
  return ptr;
}


通过条件编译将对应平台下向堆区申请内存的函数进行封装,此后就不必再关心当前所在平台,当需要直接向堆区申请内存时直接调用封装后的SystemAlloc()函数即可


定长内存池中的成员变量


对于向堆区申请到的大块内存,可以用一个指针来对其进行管理,但仅用一个指针肯定不够,还需要一个变量来记录这块内存的长度


由于此后需要将这块内存进行切分,为了方便切分操作,指向这块内存的指针最好是字符指针,因为指针的类型决定了指针的步长以及查看数据的大小。对于字符指针而言,当需要向后移动n个字节时,直接对字符指针进行加n操作即可


915ca6eb4d084c3a80ee708504630a12.png


使用完后释放回来的定长内存块也需被管理,可以将这些释放回来的定长内存块链接成一个链表。管理释放回来的内存块的链表被称为自由链表,为了能找到这个自由链表,因此还需要一个指向自由链表的指针


5addac44751d404ba61f580fadb18470.png

char* _memory = nullptr;//char*便于切割分配内存 指向大块内存
void* _freeList = nullptr;//自由链表 管理归还的内存块
size_t _remainBytes = 0;//记录剩余字节数

管理被释放内存块的具体方案


对于回收的定长内存块,可以使用自由链表将其链接起来,但并不需要为其专门定义链式结构,可以让内存块的前4个字节(32位平台)或8个字节(64位平台)存储后面内存块的起始地址

6f53858ac2dc4802bbe1309af6b72d10.png



指针在32位平台上占用4个字节,在64位平台上占用8个字节,那么如何写出既适应32位平台也适应64位平台的代码呢?


当需要访问一个内存块的前4/8个字节时,可以先该内存块的首地址强转为二级指针,由于二级指针存储的是一级指针的地址,二级指针解引用能向后访问一个指针的大小(在32位下为4个字节、64位平台为8个字节,自动适应了环境),此时就访问到了该内存块的前4/8个字节,即下一个内存块的首地址


void*& NextObj(void* ptr) { return *(void**)ptr; }

申请对象


申请对象时,内存池应该优先把还回来的内存块对象再次重复利用,因此若自由链表中有内存块的话,就直接从自由链表中头删一个内存块直接返回即可

fbbe58ca9984468f87751e20952e3cbc.png



若自由链表中没有空闲内存块,那么就在大块内存中切出定长的内存块进行返回。当内存块切出后及时更行 _memory 指针的指向,以及 _remainBytes 的值即可

f6b79a2febfa4882a40d23b9e52b0a7b.png



若大块内存已经不足以切分出一个对象时,就应该调用封装的SystemAlloc()函数,再次向堆申请一块内存空间,此时也要及时更新_memory指针的指向,以及_remainBytes的值(可能存在浪费内存,即所剩内存不足以切出一个对象但_memory却有了新的指向)


由于当内存块释放时需要将内存块链接到自由链表当中,因此必须保证切出来的对象至少能够存储得下一个地址,所以当对象的大小小于当前所在平台指针的大小时,需要按指针的大小进行内存块的切分,即需向上对齐

T* New()
{
  T * obj = nullptr;
  if (_freeList != nullptr)//优先使用分配过的内存
  {
    obj = (T*)_freeList;
    _freeList = *(void**)_freeList;//强转为void**后解引用为void*,即在32位系统下可以看到4个字节,64位系统下可以看到8个字节
  }
  else
  {
    size_t objSize = sizeof(T) > sizeof(void*) ? sizeof(T) : sizeof(void*);//确保至少能存储一个指针大小
    if (_remainBytes < objSize)//大块内存空间不足
    {
      _remainBytes = 128 * 1024;
      _memory = (char*)SystemAlloc(_remainBytes >> 13);
    }
    obj = (T*)_memory;
    _memory += objSize;
    _remainBytes -= objSize;
  }
  new(obj)T;//定位new 调用对象构造函数初始化
  return obj;
}


注意:这是一个定长对象内存池,当内存块切分出来后,应使用定位new,显示调用该对象的构造函数对其进行初始化


释放对象


注意:在释放对象时,应该显示调用该对象的析构函数清理该对象,因为该对象可能还管理着其他某些资源,若不对其进行清理那么这些资源将无法被释放,就会导致内存泄漏


析构后将该内存块头插入_freeList中即可


完整代码

#pragma once
#include <iostream>
using std::cout;
using std::endl;
#ifdef WIN32
  #include <windows.h>
#else
  #include <sys/mman.h>
  #include <unistd.h>
#endif
inline static void* SystemAlloc(size_t kpage)
{
#ifdef _WIN32
  void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
  // linux下brk mmap等
#endif
  if (ptr == nullptr) throw std::bad_alloc();
  return ptr;
}
template <class T>
class ObjectPool
{
public:
  T* New()
  {
    T * obj = nullptr;
    if (_freeList != nullptr)//优先使用分配过的内存
    {
      obj = (T*)_freeList;
      _freeList = *(void**)_freeList;//强转为void**后解引用为void*,即在32位系统下可以看到4个字节,64位系统下可以看到8个字节
    }
    else
    {
      size_t objSize = sizeof(T) > sizeof(void*) ? sizeof(T) : sizeof(void*);//确保至少能存储一个指针大小
      if (_remainBytes < objSize)//大块内存空间不足
      {
        _remainBytes = 128 * 1024;
        _memory = (char*)SystemAlloc(_remainBytes >> 13);
      }
      obj = (T*)_memory;
      _memory += objSize;
      _remainBytes -= objSize;
    }
    new(obj)T;//定位new 调用对象构造函数初始化
    return obj;
  }
  void Delete(T* obj)
  {
    obj->~T();//调用对象析构函数
    *(void**)obj = _freeList;//头插
    _freeList = obj;
  }
private:
  char* _memory = nullptr;//char*便于切割分配内存 指向大块内存
  void* _freeList = nullptr;//自由链表 管理归还的内存块
  size_t _remainBytes = 0;//记录剩余字节数
};


性能对比


在只创建定长对象的情况下,使用下面的代码对new/delete和定长内存池进行性能对比

#include "Object_pool.h"
#include <vector>
#include <ctime>
using std::vector;
struct TreeNode
{
  int _val;
  TreeNode* _left;
  TreeNode* _right;
  TreeNode() :_val(0), _left(nullptr), _right(nullptr) {}
};
void TestObjectPool()
{
  const size_t Rounds = 3;// 申请释放的轮次
  const size_t N = 1000000;// 每轮申请释放多少次
  std::vector<TreeNode*> v1;
  v1.reserve(N);
  size_t begin1 = clock();
  for (size_t j = 0; j < Rounds; ++j)
  {
    for (int i = 0; i < N; ++i) v1.push_back(new TreeNode);
    for (int i = 0; i < N; ++i) delete v1[i];
    v1.clear();
  }
  size_t end1 = clock();
  std::vector<TreeNode*> v2;
  v2.reserve(N);
  ObjectPool<TreeNode> TNPool;
  size_t begin2 = clock();
  for (size_t j = 0; j < Rounds; ++j)
  {
    for (int i = 0; i < N; ++i) v2.push_back(TNPool.New());
    for (int i = 0; i < N; ++i) TNPool.Delete(v2[i]);
    v2.clear();
  }
  size_t end2 = clock();
  cout << "new cost time:" << end1 - begin1 << endl;
  cout << "object pool cost time:" << end2 - begin2 << endl;
}
int main()
{
  TestObjectPool();
  return 0;
}

24754d28770d4282af88a4a755a808db.png


不难发现,定长内存池消耗的时间比malloc/free消耗的时间要短。这是因为malloc是一个通用的内存池,而定长内存池是专门针对申请定长对象而设计的,因此在这种特殊场景下定长内存池的效率更高


四、整体框架设计介绍

如今很多的开发环境都是多核多线程,因此在申请内存的时,必然存在激烈的锁竞争问题。malloc本身其实已经很优秀了,但是在并发场景下可能会因为频繁的加锁和解锁导致效率有所降低,而该项目的原型tcmalloc实现的就是一种在多线程高并发场景下更胜一筹的内存池


在实现内存池时一般需要考虑到效率问题和内存碎片的问题,但对于高并发内存池来说,还需要考虑在多线程环境下的锁竞争问题

1e57e45f713c40aab82e45216982f0b5.png



thread_cache: 线程缓存是每个线程独有的,用于小于等于256KB的内存分配,每个线程独享一个thread_cache

central_cache: 中心缓存是所有线程所共享的,当thread_cache需要内存时会按需从central _cache中获取内存,而当thread_cache中的内存满足一定条件时,central_cache也会在合适的时机对其进行回收

page_cache: 页缓存中存储的内存是以页为单位进行存储及分配的,当central_cache需要内存时,page_cache会分配出一定数量的页分配给central_cache,而当central_cache中的内存满足一定条件时,page_cache也会在合适的时机对其进行回收,并将回收的内存尽可能的进行合并,组成更大的连续内存块,缓解内存碎片的问题

解释:


每个线程都有一个属于自己的thread cache,也就意味着线程在thread_cache申请内存时是不需加锁的,而一次性申请大于256KB内存的情况是很少的,因此大部分情况下申请内存时都是无锁的,这也是高并发内存池高效的地方

每个线程的thread cache会根据自己的情况向central cache申请或归还内存,这避免了出现单个线程的thread cache占用太多内存,而其余thread cache出现内存吃紧的问题

多线程的thread cache可能会同时找central cache申请内存,此时就会涉及线程安全的问题,因此在访问central cache时是需要加锁的,但central cache实际上是一个哈希桶的结构,只有当多个线程同时访问同一个桶时才需要加锁,所以这里的锁竞争也不会很激烈

各个模块的作用


thread_cache主要解决锁竞争的问题,每个线程独享thread_cache,当自己的thread_cache中有内存时该线程不会去和其他线程进行竞争,每个线程只要在各自的thread_cache申请内存就行了


central_cache主要起到一个居中调度的作用,每个线程的thread_cache需要内存时从central _cache获取,而当thread_cache的内存多了就会将内存还给central_cache,其作用类似于一个中枢,因此取名为中心缓存


page_cache就负责提供以页为单位的大块内存,当central_cache需要内存时就会去向page_cache申请,而当page_cache没有内存了就会直接去找系统,也就是直接去堆上按页申请内存块



目录
相关文章
|
21天前
|
监控 Java 数据库连接
线程池在高并发下如何防止内存泄漏?
线程池在高并发下如何防止内存泄漏?
|
5月前
|
缓存 Java
《JVM由浅入深学习九】 2024-01-15》JVM由简入深学习提升分(生产项目内存飙升分析)
《JVM由浅入深学习九】 2024-01-15》JVM由简入深学习提升分(生产项目内存飙升分析)
50 0
|
3月前
|
存储 缓存 NoSQL
Redis内存管理揭秘:掌握淘汰策略,让你的数据库在高并发下也能游刃有余,守护业务稳定运行!
【8月更文挑战第22天】Redis的内存淘汰策略管理内存使用,防止溢出。主要包括:noeviction(拒绝新写入)、LRU/LFU(淘汰最少使用/最不常用数据)、RANDOM(随机淘汰)及TTL(淘汰接近过期数据)。策略选择需依据应用场景、数据特性和性能需求。可通过Redis命令行工具或配置文件进行设置。
78 2
|
3月前
|
缓存 开发框架 .NET
看看 Asp.net core Webapi 项目如何优雅地使用内存缓存
看看 Asp.net core Webapi 项目如何优雅地使用内存缓存
|
5月前
|
存储 缓存 NoSQL
Redis是一种高性能的内存数据库,常用于高并发环境下的缓存解决方案
【6月更文挑战第18天】**Redis摘要:** 高性能内存数据库,擅长高并发缓存。数据存内存,访问迅速;支持字符串、列表等多元数据类型;具备持久化防止数据丢失;丰富命令集便于操作;通过节点集群实现数据分片与负载均衡,增强可用性和扩展性。理想的缓存解决方案。
78 1
|
4月前
|
设计模式 安全 NoSQL
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
68 0
|
4月前
|
设计模式 安全 Java
Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
62 0
|
4月前
|
设计模式 存储 缓存
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
55 0
|
4月前
|
存储 安全 Java
Java面试题:假设你正在开发一个Java后端服务,该服务需要处理高并发的用户请求,并且对内存使用效率有严格的要求,在多线程环境下,如何确保共享资源的线程安全?
Java面试题:假设你正在开发一个Java后端服务,该服务需要处理高并发的用户请求,并且对内存使用效率有严格的要求,在多线程环境下,如何确保共享资源的线程安全?
69 0
|
4月前
|
监控 Java
Java面试题:Java内存、多线程与并发工具包的深度探索,Java内存管理策略及其优化技巧,Java多线程并发控制的工具类与机制,Java并发工具包在实际项目中的应用
Java面试题:Java内存、多线程与并发工具包的深度探索,Java内存管理策略及其优化技巧,Java多线程并发控制的工具类与机制,Java并发工具包在实际项目中的应用
39 0