使用迭代最近点算法组合多个点云以重建三维场景

简介: 使用迭代最近点算法组合多个点云以重建三维场景。

​一、前言
使用迭代最近点 (ICP) 算法组合多个点云以重建三维场景。
使用 Kinect 捕获的点云集合拼接在一起,以构建场景的更大三维视图。该示例将 ICP 应用于两个连续的点云。这种类型的重建可用于开发对象的 3D 模型或构建用于同时定位和映射 (SLAM) 的 3-D 世界地图。
二、注册两个点云
配准质量取决于数据噪声和ICP算法的初始设置。您可以应用预处理步骤来过滤噪声或设置适合您的数据的初始属性值。在这里,通过使用盒式网格过滤器进行缩减采样来预处理数据,并将网格过滤器的大小设置为 10cm。网格过滤器将点云空间划分为立方体。每个立方体内的点通过平均其 X,Y,Z 坐标组合成单个输出点。

为了对齐两个点云,我们使用ICP算法来估计下采样数据的三维刚性变换。我们使用第一个点云作为参考,然后将估计的变换应用于原始的第二个点云。我们需要将场景点云与对齐的点云合并以处理重叠的点。

首先找到用于将第二个点云与第一个点云对齐的刚性变换。使用它可将第二个点云转换为由第一个点云定义的参考坐标系。
现在,我们可以使用注册的数据创建世界场景。重叠区域使用 1.5cm 框网格过滤器进行过滤。增加合并大小可降低生成的场景点云的存储要求,减小合并大小可提高场景分辨率。
1.png

三、拼接一系列点云
要组成更大的 3D 场景,请重复与上述相同的过程来处理一系列点云。使用第一个点云建立参考坐标系。将每个点云转换为参考坐标系。此变换是成对变换的乘法。
2.png
3.png

目录
相关文章
|
10天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
|
1月前
|
算法 BI 定位技术
三维Chan算法解决室内定位问题的MATLAB实现
三维Chan算法解决室内定位问题的MATLAB实现
46 0
|
8天前
|
运维 算法 搜索推荐
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
|
26天前
|
机器学习/深度学习 边缘计算 并行计算
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
|
1月前
|
机器学习/深度学习 人工智能 算法
【两阶段鲁棒微网】【不确定性】基于关键场景辨别算法的两阶段鲁棒微网优化调度(Matlab代码实现)
【两阶段鲁棒微网】【不确定性】基于关键场景辨别算法的两阶段鲁棒微网优化调度(Matlab代码实现)
|
1月前
|
传感器 算法 Python
【无人机设计与控制】改进型粒子群优化算法(IPSO)的无人机三维路径规划研究(Matlab代码实现)
【无人机设计与控制】改进型粒子群优化算法(IPSO)的无人机三维路径规划研究(Matlab代码实现)
|
11天前
|
机器学习/深度学习 数据采集 算法
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
|
12天前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
18天前
|
算法 调度 决策智能
基于高尔夫优化算法GOA求解无人机三维路径规划研究(Matlab代码实现)
基于高尔夫优化算法GOA求解无人机三维路径规划研究(Matlab代码实现)
|
23天前
|
机器学习/深度学习 存储 算法
基于密集型复杂城市场景下求解无人机三维路径规划的Q-learning 算法研究(Matlab代码实现)
基于密集型复杂城市场景下求解无人机三维路径规划的Q-learning 算法研究(Matlab代码实现)

热门文章

最新文章