💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥
🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳ 座右铭:行百里者,半于九十。
📋 📋 📋 本文目录如下: 🎁 🎁 🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
无人机为执行各种军事和民用任务提供了平台。这包括情报、监视和侦察( ISR )、战场损伤评估和部队保护等军事应用。民用应用包括遥感、科学研究、搜救任务、边境巡逻、受灾地区监测、航空摄影、航空测绘岩土工程、植被生长分析、农作物除尘、精准农业、地形变化评估等。无人机产业是航天工业中发展最快的部门,民用无人机的使用也在显著增长。据估计,在未来十年中,无人机的支出将从目前全世界每年52亿美元的支出翻一番。一旦技术成熟,将无人机集成到国家空间系统( NAS )中,本文是为无人机开发自适应飞行控制器。包括多层感知器( MLP )和回声状态网络( ESN )。MLP用于离线模型,而ESN用于在线模型。MLP将成为焦点,因为它的自适应和循环行为允许它自然地坚持经典控制律,并完成反馈回路。ESN采用有监督的时序方法进行机器学习。这使得它成为解决诸如飞行控制器等动态系统问题的备选方案。MLP将主要用于误差校正。ESN是稀疏连接的,隐藏层有12个神经元,具有单一的输入和输出信号。隐藏层充当一个储液器,因为它表现出电流已知的40 %泄漏率。详细文章讲解见第4部分。
📚2 运行结果
部分代码:
% NSF Twin Engine Doublet Data clc clear % Read log file Data = xlsread('Fri May 24 14-54-11 2013e.xlsx'); % Read in time (ms) t = Data(:,1)-27081; % Convert milli seconds to seconds tsec = t./1000; % Convert seconds to minutes tmin = tsec./60; % Determine the point at which 1 Hz recording to 10 Hz recording tdiff = diff(tsec); %Change time set to only contain 10 Hz data tsec2 = tsec(829:4557); %Roll Rate P = Data(:,32).*(180/pi()); Pflight = P(829:4557); % Pitch Rate Q = Data(:,33).*(180/pi()); Qflight = Q(829:4557); % Yaw Rate R = Data(:,34).*(180/pi()); Rflight = R(829:4557); % Roll Roll = Data(:,38).*(180/pi()); Roll_flight = Roll(829:4557); % Pitch Pitch = Data(:,39).*(180/pi()); Pitch_flight = Pitch(829:4557); % Yaw Yaw = Data(:,40).*(180/pi()); Yaw_flight = Yaw(829:4557); % Acknowledgement Ratio AckRatio = Data(:,49); AckRatio_flight = AckRatio(829:4557); % RSSI RSSI = Data(:,50); RSSI_flight = RSSI(829:4557); % Surface 0 % Aileron Surface0 = Data(:,51); Sur0_flight = Surface0(829:4557).*(180/pi()); % Looking for constant surface deflection Aileron1_diff = diff(Sur0_flight); % Surface 1 % Elevator Surface1 = Data(:,52).*(180/pi()); Sur1_flight = Surface1(829:4557); % Looking for constant surface deflection Elevator1_diff = diff(Sur1_flight); % Surface 2 % Throttle Surface2 = Data(:,53); Sur2_flight = Surface2(829:4557); % Looking for constant surface deflection Throttle1_diff = diff(Sur2_flight); % Surface 3 Surface3 = Data(:,54).*(180/pi()); Sur3_flight = Surface3(829:4557); % Looking for constant surface deflection Sur3_diff = diff(Sur3_flight); % Surface 4 Surface4 = Data(:,55).*(180/pi()); Sur4_flight = Surface4(829:4557); % Looking for constant surface deflection Sur4_diff = diff(Sur3_flight); % Surface 5 % Aileron Surface5 = Data(:,56).*(180/pi()); Sur5_flight = Surface5(829:4557); % Looking for constant surface deflection Aileron2_diff = diff(Sur5_flight); % Surface 6 % Elevator Surface6 = Data(:,57).*(180/pi()); Sur6_flight = Surface6(829:4557); % Looking for constant surface deflection Elevator2_diff = diff(Sur6_flight); % Surface 7 % Throttle Surface7 = Data(:,58); Sur7_flight = Surface7(829:4557); % Looking for constant surface deflection Throttle2_diff = diff(Sur7_flight); % Roll 3-2-1-1 % 1567-1624 No Elevator Movement subplot(3,2,1) plot(tsec2(1567:1624),Sur0_flight(1567:1624)) xlabel('time (seconds)') ylabel('deflection (degrees)') title('Roll 3-2-1-1') subplot(3,2,2) plot(tsec2(1567:1624),Roll_flight(1567:1624)) title('Roll Response') xlabel('time (seconds)') ylabel('roll angle (degrees)') % 1733-1805 No Elevator Movement subplot(3,2,3) plot(tsec2(1733:1805),Sur0_flight(1733:1805)) xlabel('time (seconds)') ylabel('deflection (degrees)') subplot(3,2,4) plot(tsec2(1733:1805),Roll_flight(1733:1805)) xlabel('time (seconds)') ylabel('roll angle (degrees)') % 2563-2628 No Elevator Movement subplot(3,2,5) plot(tsec2(2563:2628),Sur0_flight(2563:2628)) xlabel('time (seconds)') ylabel('deflection (degrees)') subplot(3,2,6) plot(tsec2(2563:2628),Roll_flight(2563:2628)) xlabel('time (seconds)') ylabel('roll angle (degrees)') % Pitch 3-2-1-1 % 908 - 980 No Aileron Movement figure subplot(3,2,1) plot(tsec2(908:980),Sur1_flight(908:980)) xlabel('time (seconds)') ylabel('deflection (degrees)') title('Pitch 3-2-1-1') subplot(3,2,2) plot(tsec2(908:980),Pitch_flight(908:980)) title('Pitch Response') xlabel('time (seconds)') ylabel('roll angle (degrees)') % 1068 - 1148 No Aileron Movement subplot(3,2,3) plot(tsec2(1068:1148),Sur1_flight(1068:1148)) xlabel('time (seconds)') ylabel('deflection (degrees)') subplot(3,2,4) plot(tsec2(1068:1148),Pitch_flight(1068:1148)) xlabel('time (seconds)') ylabel('roll angle (degrees)') % 2380 - 2437 No Aileron Movement subplot(3,2,5) plot(tsec2(2380:2437),Sur1_flight(2380:2437)) xlabel('time (seconds)') ylabel('deflection (degrees)') subplot(3,2,6) plot(tsec2(2380:2437),Roll_flight(2380:2437)) xlabel('time (seconds)') ylabel('roll angle (degrees)') figure (3), subplot(2,1,1),plot(tsec2(1567:1624),Sur0_flight(1567:1624),'k-','linewidth',3) grid ylabel('Aileron (deg)','fontsize',25) title('Roll Doublet','fontsize',25),set(gca,'fontsize',25) subplot(2,1,2),plot(tsec2(1567:1624),Roll_flight(1567:1624),'k-','linewidth',3) ylabel('Roll Angle (deg)','fontsize',25),grid,set(gca,'fontsize',25) xlabel('Time (sec)')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。