Go微服务架构实战 下篇:1. gRPC + Opentracing + Zipkin实现分布式链路追踪系统

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
应用实时监控服务-应用监控,每月50GB免费额度
日志服务 SLS,月写入数据量 50GB 1个月
简介: Go微服务架构实战 下篇:1. gRPC + Opentracing + Zipkin实现分布式链路追踪系统

分布式链路追踪实战



干货:

什么是APM

什么是Opentracing

什么是SpanID

什么是TraceID

基于zipkin构建链路追踪


1. 什么是APM


APM(Application Performance Management,即应用性能管理,在分布式领域也称为分布式跟踪管理)对企业的应用系统进行实时监控,它是用于实现对应用程序性能管理和故障管理的系统化的解决方案。


APM核心功能:

  • 服务调用跟踪
  • 应用系统存活检测
  • 监控告警


开源APM管理工具:

  • ZipKin
  • PinPoint
  • SkyWalking
  • Prometheus


我们这篇文章主要是讲解APM的核心功能之一:服务调用跟踪,用到的工具是ZipKin,本来想用Prometheus搭建一个监控平台,想来想去比较简单,大家直接在本地就可以搭建单机版的监控平台。


2. 什么是Opentracing


OpenTracing通过提供平台无关、厂商无关的API,使得开发人员能够方便的添加(或更换)追踪系统的实现。


不过OpenTracing并不是标准。因为CNCF不是官方标准机构,但是它的目标是致力为分布式追踪创建更标准的API和工具。


3. 什么是TraceID


一个trace代表了一个事务或者流程在(分布式)系统中的执行过程,而这个过程会有唯一ID去标识,这个唯一ID就是Trace ID,通俗解释就是一个API请求的完整调用流程。


4. 什么是SpanID


一个span代表在分布式系统中完成的单个工作单元,这个工作单元有唯一ID去标识,这个唯一ID就是Span ID。也包含其他span的“引用”,这允许将多个spans组合成一个完整的Trace。


通俗解释就是在Trace这样一个完整调用的流程中,Span扮演的角色就是每次执行的一次IO或者非IO操作。所以你通过Trace找到整个链路,然后从链路中找到确定的Span,这样就可以准确定位一次问题或者性能查询。


5. 其他名称解释


Span tags(跨度标签)可以理解为用户自定义的Span注释。便于查询、过滤和理解跟踪数据。


Span logs(跨度日志)可以记录Span内特定时间或事件的日志信息。主要用于捕获特定Span的日志信息以及应用程序本身的其他调试或信息输出。


SpanContext 代表跨越进程边界,传递到子级Span的状态。常在追踪示意图中创建上下文时使用。


6. 案例


640.png


图中可以看到以下内容:

  • 执行时间的上下文
  • 服务间的层次关系
  • 服务间串行或并行调用链


结合以上信息,在实际场景中我们可以通过整个系统的调用链的上下文、性能等指标信息,一下子就能够发现系统的痛点在哪儿。


7. 什么是ZipKin


Zipkin是分布式追踪系统。它的作用是收集解决微服务架构中的延迟问题所需的时序数据。它管理这些数据的收集和查找。


Zipkin的设计基于Google Dapper论文。


8. 基于ZipKin构建链路追踪


首先在基于之前的项目之中,把server.go修改一下,让其支持分布式链路追踪。server.go:

const (
 SERVICE_NAME              = "simple_zipkin_server"
 ZIPKIN_HTTP_ENDPOINT      = "http://127.0.0.1:9411/api/v2/spans" //上报到ZipKin中的链路
 ZIPKIN_RECORDER_HOST_PORT = "0.0.0.0"
)
func main() {
 ...
 //链路日志输出到哪
 reporter := httpreporter.NewReporter(ZIPKIN_HTTP_ENDPOINT)
 defer reporter.Close()
 //记录服务名称和端口
 endpoint, err := zipkin.NewEndpoint(SERVICE_NAME, ZIPKIN_RECORDER_HOST_PORT)
 if err != nil {
  log.Fatalf("zipkin.NewEndpoint err: %v", err)
 }
 tracer, err := zipkin.NewTracer(reporter, zipkin.WithLocalEndpoint(endpoint))
 if err != nil {
  log.Fatalf("zipkin.NewTracer err: %v", err)
 }
 //接入opentracing
 t := zipkinot.Wrap(tracer)
 opentracing.SetGlobalTracer(t)
 logrus.Infof("starting hello service at: %s", *port)
 //初始化grpc server,并注册中间件
 s := grpc.NewServer(
  // otgrpc.LogPayloads 是否记录 入参和出参
  // otgrpc.SpanDecorator 装饰器,回调函数
  // otgrpc.IncludingSpans 是否记录
  grpc.UnaryInterceptor(grpc_middleware.ChainUnaryServer(otgrpc.OpenTracingServerInterceptor(t,
   otgrpc.LogPayloads(),
   // IncludingSpans是请求前回调
   otgrpc.IncludingSpans(func(parentSpanCtx opentracing.SpanContext, method string, req, resp interface{}) bool {
    log.Printf("method: %s", method)
    log.Printf("req: %+v", req)
    log.Printf("resp: %+v", resp)
    return true
   }),
   // SpanDecorator是请求后回调
   otgrpc.SpanDecorator(func(span opentracing.Span, method string, req, resp interface{}, grpcError error) {
    log.Printf("method: %s", method)
    log.Printf("req: %+v", req)
    log.Printf("resp: %+v", resp)
    log.Printf("grpcError: %+v", grpcError)
   }),
  ))),
  )
 //注册服务
 pb.RegisterGreeterServer(s, &server{})
 fmt.Println("ddd")
 s.Serve(lis)
}

至此我们的grpc服务就有了链路追踪功能,接下来我们演示下,启动server.go:k8s-grpc-demo go run cmd/svr/svr.go -port 50004

然后启动客户端:k8s-grpc-demo go run cmd/cli/cli.go

我们可以看下server.go的日志:

640.png

我们发现日志完美记录到ZipKin中,接下来我们看下ZipKin地址:


640.png

当我们点击RUN QUERY的时候可以看到如下:

640.png


当我们点击某一个Trace的时候,就进入这个Trace的整个调用链路详情中:


640.png


这样我就基于gRPC + Opentracing + Zipkin的分布式链路追踪系统就搭建完成了,大家下去可以自己尝试下。


9. 小结


各位读者朋友们,我们的Go微服务架构实战【上中下】系列课程到这里就基本上结束了,写作过程中虽然很累,很艰辛,但是这个系列能在有限的业余时间坚持创作完实属不易,希望在之后的业余时间当中能继续为大家带来更棒的系列课程,欢迎大家点赞、关注和分享。


最后再次感谢大家对本系列课程的大力支持,由于个人能力有限,难免哪里写的有问题欢迎大家指出,也欢迎各位能在百忙之中抽出时间学习,最后和各位分享一句话:简单的东西不一定是最好的,但最好的东西一定是简单的。

相关实践学习
基于OpenTelemetry构建全链路追踪与监控
本实验将带领您快速上手可观测链路OpenTelemetry版,包括部署并接入多语言应用、体验TraceId自动注入至日志以实现调用链与日志的关联查询、以及切换调用链透传协议以满足全链路打通的需求。
分布式链路追踪Skywalking
Skywalking是一个基于分布式跟踪的应用程序性能监控系统,用于从服务和云原生等基础设施中收集、分析、聚合以及可视化数据,提供了一种简便的方式来清晰地观测分布式系统,具有分布式追踪、性能指标分析、应用和服务依赖分析等功能。 分布式追踪系统发展很快,种类繁多,给我们带来很大的方便。但在数据采集过程中,有时需要侵入用户代码,并且不同系统的 API 并不兼容,这就导致了如果希望切换追踪系统,往往会带来较大改动。OpenTracing为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范。OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。Skywalking基于OpenTracing规范开发,具有性能好,支持多语言探针,无侵入性等优势,可以帮助我们准确快速的定位到线上故障和性能瓶颈。 在本套课程中,我们将全面的讲解Skywalking相关的知识。从APM系统、分布式调用链等基础概念的学习加深对Skywalking的理解,从0开始搭建一套完整的Skywalking环境,学会对各类应用进行监控,学习Skywalking常用插件。Skywalking原理章节中,将会对Skywalking使用的agent探针技术进行深度剖析,除此之外还会对OpenTracing规范作整体上的介绍。通过对本套课程的学习,不止能学会如何使用Skywalking,还将对其底层原理和分布式架构有更深的理解。本课程由黑马程序员提供。
相关文章
|
4天前
|
Java 关系型数据库 Nacos
微服务SpringCloud链路追踪之Micrometer+Zipkin
SpringCloud+Openfeign远程调用,并用Mircrometer+Zipkin进行链路追踪
63 20
|
1月前
|
存储 JSON 监控
微服务链路追踪原理,一文搞懂!
本文重点讲解微服务链路追踪(Microservices Distributed Tracing),介绍其原理、架构及工作流程。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
微服务链路追踪原理,一文搞懂!
|
24天前
|
存储 运维 数据可视化
如何为微服务实现分布式日志记录
如何为微服务实现分布式日志记录
43 1
|
6天前
|
存储 监控 供应链
微服务拆分的 “坑”:实战复盘与避坑指南
本文回顾了从2~3人初创团队到百人技术团队的成长历程,重点讨论了从传统JSP到前后端分离+SpringCloud微服务架构的演变。通过实际案例,总结了微服务拆分过程中常见的两个问题:服务拆分边界不清晰和拆分粒度过细,并提出了优化方案,将11个微服务优化为6个,提高了系统的可维护性和扩展性。
22 0
|
1月前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
86 4
|
1月前
|
存储 NoSQL 关系型数据库
微服务Zipkin链路追踪原理,图解版,一文吃透!
本文重点讲解Zipkin链路追踪的原理与使用,帮助解决微服务架构下的服务响应延迟等问题,提升系统性能与稳定性。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
微服务Zipkin链路追踪原理,图解版,一文吃透!
|
2月前
|
消息中间件 存储 负载均衡
微服务与分布式系统设计看这篇就够了!
【10月更文挑战第12天】 在现代软件架构中,微服务和分布式系统设计已经成为构建可扩展、灵活和可靠应用程序的主流方法。本文将深入探讨微服务架构的核心概念、设计原则和挑战,并提供一些关于如何在分布式系统中实现微服务的实用指导。
84 2
|
2月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
3月前
|
运维 持续交付 API
深入理解并实践微服务架构:从理论到实战
深入理解并实践微服务架构:从理论到实战
155 3
|
Go
Go实战抢红包系统(三)-架构设计(下)
Go实战抢红包系统(三)-架构设计(下)
181 0
Go实战抢红包系统(三)-架构设计(下)

热门文章

最新文章