计及需求响应的粒子群算法求解风能、光伏、柴油机、储能容量优化配置(Matlab代码实现)

简介: 计及需求响应的粒子群算法求解风能、光伏、柴油机、储能容量优化配置(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

2.1 需求响应前

2.2 实时电价(需求响应)

2.3 分时电价(需求响应)

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

微电网中分布式能源及储能系统的装机容量受当地天气情况、负荷大小、经济效益等多方面影


响[3-4] 。文献[5]提出了一种微电网安全运行方案,利用控制储能运行模式实现微电网离网转并网无缝切换,缩短双向储能换流器(Power Conversion System,PCS)并网后电压频率工作模式时间,从而避免储能出现大电流运行和系统限功率运行的现象。 文献[6]分析了风光不平衡出力对微电网系统造成的影响,并以平滑效果最优与投资成本最低为目标函数,利用遗传算法求解风光储容量最优配比方案。文献[7]针对含可调节负荷的大型微电网系统,分析清洁电力在进行市场交易时存在的风险,利用综合评价法实现对风光发电在市场交易的合理管控,为绿电参与市场交易提供参考。文献[8]提出了一种含氢储能的微电网结构,结合清洁能源利用率及负荷缺失率为指标,分析以最小总净现值成本为目标下的风光储容量配比方法。文献[9]构建了风、光电源的出力模型,基于非样板机的采集数据真实反应新能源出力场景,结合实测数据改进样板机出力算法,进而更加准确地测算风光容量配比。由于微电网项目需要用到很多一次设备,包括分布式电源、储能装置及各种逆变器,设计结构复杂[14-16] 。从微电网系统整体设计、施工、维护的角度


出发,分层次地从不同方面对微电网技术的经济性和可靠性进行研究。依据某实际微电网改造示范


项目的安装环境、各电源容量配比、经济效益情况,从办公住宅小区智能微电网改造入手,分析其建筑环境与负荷类型,简化约束条件和容量配比选取原则,利用PSO算法提取经济效益最优目标。


7b5220a86be4e366849d6c152006a06a.png


📚2 运行结果

2.1 需求响应前


9455d2462f1a98cfabb1cc878878c067.png

582871929caaaf48faf7b58e45435aba.png

b26093cee6d4500a033e967431dc1284.png

2bec5049f38f0561dd48c4c1d707ee37.png

e25db0c8be957a872deef7465bcd5870.png

2b69bb568d32d2282f71504466ee5ec4.png

7683f71c24c50a626bf73b646c19a7a8.png

80bf5fd3bbec5c75e39107a731c90fcd.png

063ad9f7c8f5635780b41e931ae1f3e5.png

55c8ef1362c74419caf418f834ccc75a.png


2.2 实时电价(需求响应)


ba843e414f255271c5867d989f199725.png

c2b2f64b8ddd4a167035c14947c898c5.png

dbbea7a76436b6e49c070270471335e9.png

0fc4191c71da6a281ea6f7656a595bdd.png

c4e42d38ae20f2f9962d374db872d6c0.png

b1fe9426463346af2b2443a6bcfce805.png

b3dbbf8f9c216ab8b98912146cd7f850.png


2.3 分时电价(需求响应)


550277c72c7d2ce954a25b7570636b9e.png

53c71ae45f2130ad56f11a7c2cc5c4ff.png

0fc33dc36144ba022a733721bb16c9ea.png

c2c5d8739144048b05fb0a52a04de2fe.png

69f349f370104e0191bd9a90eeb0fd7a.png

4c2837b14b06660f0ffa0565473a17c1.png

b75b772db1b62e905a56a0607721cf27.png

1e8ba9720bc73ff6a791ed39582cce2f.png

56efa4e8c892ceac9aa67f7ff4fc144e.png

4bacb13c9d81b048fe3e40885ee8c95c.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]王鑫,陈祖翠,卞在平,王业耀,吴育苗.基于粒子群优化算法的智慧微电网风光储容量优化配置[J].综合智慧能源,2022,44(06):52-58.


[2]王广玲. 微网风光储容量优化配置[D].北方工业大学,2021.DOI:10.26926/d.cnki.gbfgu.2021.000448.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
5天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
WK
|
22天前
|
算法
粒子群算法的优缺点分别是什么
粒子群优化(PSO)算法概念简单,易于编程实现,参数少,收敛速度快,全局搜索能力强,并行处理高效。然而,它也容易陷入局部最优,参数设置敏感,缺乏坚实的理论基础,且性能依赖初始种群分布,有时会出现早熟收敛。实际应用中需根据具体问题调整参数以最大化优势。
WK
86 2
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
126 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
WK
|
1月前
|
算法 决策智能
粒子群算法的缺点是什么
粒子群算法(PSO)虽具优点,但存在明显缺点:易陷局部最优、收敛精度低、难解离散及组合优化问题、缺乏精密搜索方法、理论基础薄弱、参数选择困难、收敛速度受问题复杂度影响。为克服这些问题,研究者提出引入动态惯性权重、调整学习因子、混合算法等改进策略,提高算法性能与适用范围,但仍需进一步研究以应对更复杂多样的问题。
WK
28 0
WK
|
1月前
|
机器学习/深度学习 算法 决策智能
什么是粒子群算法
粒子群算法(PSO)是一种元启发式优化算法,通过模拟鸟群或鱼群行为进行优化搜索。1995年由Kennedy和Eberhart提出,基于鸟类群体行为建模。算法通过粒子在搜索空间中移动,不断更新位置和速度,逐步逼近最优解。其流程包括初始化、评估、更新最佳位置及速度,直至满足终止条件。该算法具有简单性、全局搜索能力和良好收敛性,并广泛应用于函数优化、神经网络训练等多个领域。为克服局部最优和收敛速度慢的问题,已有多种改进策略。
WK
18 0
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
72 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
2月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。