强化学习DQN之俄罗斯方块

简介: 强化学习DQN之俄罗斯方块

强化学习DQN之俄罗斯方块


算法流程


本项目目的是训练一个基于深度强化学习的俄罗斯方块。具体来说,这个代码通过以下步骤实现训练:


首先设置一些随机数种子,以便在后面的训练中能够重现结果。


创建一个俄罗斯方块环境实例,这个环境是一个俄罗斯方块游戏,用于模拟AI与游戏的交互。


创建一个DeepQNetwork模型,这个模型是基于深度学习的强化学习模型,用于预测下一步的最佳行动。


创建一个优化器(optimizer)和一个损失函数(criterion),用于训练模型。


在每个训练时期(epoch)中,对于当前状态(state),计算所有可能的下一步状态(next_steps),根据一定的策略(exploration or exploitation)选择一个行动(action),并计算该行动带来的奖励(reward)和下一步是否为终止状态(done)。


将当前状态、奖励、下一步状态和终止状态添加到回放内存(replay memory)中。


如果当前状态为终止状态,则重置环境,并记录得分(final_score)、俄罗斯方块数量(final_tetrominoes)和消除的行数(final_cleared_lines)。


从回放内存中随机选择一批样本(batch),并将其用于训练模型。具体来说,将状态批次(state_batch)、奖励批次(reward_batch)、下一步状态批次(next_state_batch)和是否为终止状态批次(done_batch)分别取出,并将其分别转换为张量(tensor)。然后计算每个样本的目标值(target)y_batch,并用它来计算损失值(loss),并将损失值的梯度反向传播(backpropagation)。最后,使用优化器来更新模型参数。


输出当前训练时期的信息,并记录得分、俄罗斯方块数量和消除的行数到TensorBoard中。


如果当前训练时期为某个特定数的倍数,将模型保存到硬盘中。


重复上述步骤,直到达到指定的训练时期数。


文件目录结构

├── output.mp4
├── src
│   ├── deep_q_network.py                                    模型结构
│   └── tetris.py                                            游戏环境
├── tensorboard
│   └── events.out.tfevents.1676879249.aifs3-worker-2
├── test.py                                                  测试代码
├── trained_models                                           训练保存的模型
│   ├── tetris
│   ├── tetris_1000
│   ├── tetris_1500
│   ├── tetris_2000
│   └── tetris_500
└── train.py                                                 训练代码

模型结构

import torch.nn as nn
class DeepQNetwork(nn.Module):
    def __init__(self):
        super(DeepQNetwork, self).__init__()
        self.conv1 = nn.Sequential(nn.Linear(4, 64), nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(nn.Linear(64, 64), nn.ReLU(inplace=True))
        self.conv3 = nn.Sequential(nn.Linear(64, 1))
        self._create_weights()
    def _create_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.constant_(m.bias, 0)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        return x

游戏环境

import numpy as np
from PIL import Image
import cv2
from matplotlib import style
import torch
import random
style.use("ggplot")
class Tetris:
    piece_colors = [
        (0, 0, 0),
        (255, 255, 0),
        (147, 88, 254),
        (54, 175, 144),
        (255, 0, 0),
        (102, 217, 238),
        (254, 151, 32),
        (0, 0, 255)
    ]
    pieces = [
        [[1, 1],
         [1, 1]],
        [[0, 2, 0],
         [2, 2, 2]],
        [[0, 3, 3],
         [3, 3, 0]],
        [[4, 4, 0],
         [0, 4, 4]],
        [[5, 5, 5, 5]],
        [[0, 0, 6],
         [6, 6, 6]],
        [[7, 0, 0],
         [7, 7, 7]]
    ]
    def __init__(self, height=20, width=10, block_size=20):
        self.height = height
        self.width = width
        self.block_size = block_size
        self.extra_board = np.ones((self.height * self.block_size, self.width * int(self.block_size / 2), 3),
                                   dtype=np.uint8) * np.array([204, 204, 255], dtype=np.uint8)
        self.text_color = (200, 20, 220)
        self.reset()
    #---------------------------------------------------------------------------------------
    #  重置游戏
    #---------------------------------------------------------------------------------------
    def reset(self):
        self.board = [[0] * self.width for _ in range(self.height)]
        self.score = 0
        self.tetrominoes = 0
        self.cleared_lines = 0
        self.bag = list(range(len(self.pieces)))
        random.shuffle(self.bag)
        self.ind = self.bag.pop()
        self.piece = [row[:] for row in self.pieces[self.ind]]
        self.current_pos = {"x": self.width // 2 - len(self.piece[0]) // 2, "y": 0}
        self.gameover = False
        return self.get_state_properties(self.board)
    #---------------------------------------------------------------------------------------
    #  旋转方块
    #---------------------------------------------------------------------------------------
    def rotate(self, piece):
        num_rows_orig = num_cols_new = len(piece)
        num_rows_new = len(piece[0])
        rotated_array = []
        for i in range(num_rows_new):
            new_row = [0] * num_cols_new
            for j in range(num_cols_new):
                new_row[j] = piece[(num_rows_orig - 1) - j][i]
            rotated_array.append(new_row)
        return rotated_array
    #---------------------------------------------------------------------------------------
    #  获取当前游戏状态的一些属性
    #---------------------------------------------------------------------------------------
    def get_state_properties(self, board):
        lines_cleared, board = self.check_cleared_rows(board)
        holes = self.get_holes(board)
        bumpiness, height = self.get_bumpiness_and_height(board)
        return torch.FloatTensor([lines_cleared, holes, bumpiness, height])
    #---------------------------------------------------------------------------------------
    #  面板中空洞数量
    #---------------------------------------------------------------------------------------
    def get_holes(self, board):
        num_holes = 0
        for col in zip(*board):
            row = 0
            while row < self.height and col[row] == 0:
                row += 1
            num_holes += len([x for x in col[row + 1:] if x == 0])
        return num_holes
    #---------------------------------------------------------------------------------------
    #  计算游戏面板的凹凸度和亮度
    #---------------------------------------------------------------------------------------
    def get_bumpiness_and_height(self, board):
        board = np.array(board)
        mask = board != 0
        invert_heights = np.where(mask.any(axis=0), np.argmax(mask, axis=0), self.height)
        heights = self.height - invert_heights
        total_height = np.sum(heights)
        currs = heights[:-1]
        nexts = heights[1:]
        diffs = np.abs(currs - nexts)
        total_bumpiness = np.sum(diffs)
        return total_bumpiness, total_height
    #---------------------------------------------------------------------------------------
    #  获取下一个可能的状态
    #---------------------------------------------------------------------------------------
    def get_next_states(self):
        states = {}
        piece_id = self.ind
        curr_piece = [row[:] for row in self.piece]
        if piece_id == 0:  # O piece
            num_rotations = 1
        elif piece_id == 2 or piece_id == 3 or piece_id == 4:
            num_rotations = 2
        else:
            num_rotations = 4
        for i in range(num_rotations):
            valid_xs = self.width - len(curr_piece[0])
            for x in range(valid_xs + 1):
                piece = [row[:] for row in curr_piece]
                pos = {"x": x, "y": 0}
                while not self.check_collision(piece, pos):
                    pos["y"] += 1
                self.truncate(piece, pos)
                board = self.store(piece, pos)
                states[(x, i)] = self.get_state_properties(board)
            curr_piece = self.rotate(curr_piece)
        return states
    #---------------------------------------------------------------------------------------
    #  获取当前面板状态
    #---------------------------------------------------------------------------------------
    def get_current_board_state(self):
        board = [x[:] for x in self.board]
        for y in range(len(self.piece)):
            for x in range(len(self.piece[y])):
                board[y + self.current_pos["y"]][x + self.current_pos["x"]] = self.piece[y][x]
        return board
    #---------------------------------------------------------------------------------------
    #  添加新的方块
    #---------------------------------------------------------------------------------------
    def new_piece(self):
        if not len(self.bag):
            self.bag = list(range(len(self.pieces)))
            random.shuffle(self.bag)
        self.ind = self.bag.pop()
        self.piece = [row[:] for row in self.pieces[self.ind]]
        self.current_pos = {"x": self.width // 2 - len(self.piece[0]) // 2,
                            "y": 0
                            }
        if self.check_collision(self.piece, self.current_pos):
            self.gameover = True
    #---------------------------------------------------------------------------------------
    #  检查边界   输入:形状、位置
    #---------------------------------------------------------------------------------------
    def check_collision(self, piece, pos):
        future_y = pos["y"] + 1
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if future_y + y > self.height - 1 or self.board[future_y + y][pos["x"] + x] and piece[y][x]:
                    return True
        return False
    def truncate(self, piece, pos):
        gameover = False
        last_collision_row = -1
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if self.board[pos["y"] + y][pos["x"] + x] and piece[y][x]:
                    if y > last_collision_row:
                        last_collision_row = y
        if pos["y"] - (len(piece) - last_collision_row) < 0 and last_collision_row > -1:
            while last_collision_row >= 0 and len(piece) > 1:
                gameover = True
                last_collision_row = -1
                del piece[0]
                for y in range(len(piece)):
                    for x in range(len(piece[y])):
                        if self.board[pos["y"] + y][pos["x"] + x] and piece[y][x] and y > last_collision_row:
                            last_collision_row = y
        return gameover
    def store(self, piece, pos):
        board = [x[:] for x in self.board]
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if piece[y][x] and not board[y + pos["y"]][x + pos["x"]]:
                    board[y + pos["y"]][x + pos["x"]] = piece[y][x]
        return board
    def check_cleared_rows(self, board):
        to_delete = []
        for i, row in enumerate(board[::-1]):
            if 0 not in row:
                to_delete.append(len(board) - 1 - i)
        if len(to_delete) > 0:
            board = self.remove_row(board, to_delete)
        return len(to_delete), board
    def remove_row(self, board, indices):
        for i in indices[::-1]:
            del board[i]
            board = [[0 for _ in range(self.width)]] + board
        return board
    def step(self, action, render=True, video=None):
        x, num_rotations = action
        self.current_pos = {"x": x, "y": 0}
        for _ in range(num_rotations):
            self.piece = self.rotate(self.piece)
        while not self.check_collision(self.piece, self.current_pos):
            self.current_pos["y"] += 1
            if render:
                self.render(video)
        overflow = self.truncate(self.piece, self.current_pos)
        if overflow:
            self.gameover = True
        self.board = self.store(self.piece, self.current_pos)
        lines_cleared, self.board = self.check_cleared_rows(self.board)
        score = 1 + (lines_cleared ** 2) * self.width
        self.score += score
        self.tetrominoes += 1
        self.cleared_lines += lines_cleared
        if not self.gameover:
            self.new_piece()
        if self.gameover:
            self.score -= 2
        return score, self.gameover
    def render(self, video=None):
        if not self.gameover:
            img = [self.piece_colors[p] for row in self.get_current_board_state() for p in row]
        else:
            img = [self.piece_colors[p] for row in self.board for p in row]
        img = np.array(img).reshape((self.height, self.width, 3)).astype(np.uint8)
        img = img[..., ::-1]
        img = Image.fromarray(img, "RGB")
        img = img.resize((self.width * self.block_size, self.height * self.block_size))
        img = np.array(img)
        img[[i * self.block_size for i in range(self.height)], :, :] = 0
        img[:, [i * self.block_size for i in range(self.width)], :] = 0
        img = np.concatenate((img, self.extra_board), axis=1)
        cv2.putText(img, "Score:", (self.width * self.block_size + int(self.block_size / 2), self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.score),
                    (self.width * self.block_size + int(self.block_size / 2), 2 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, "Pieces:", (self.width * self.block_size + int(self.block_size / 2), 4 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.tetrominoes),
                    (self.width * self.block_size + int(self.block_size / 2), 5 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, "Lines:", (self.width * self.block_size + int(self.block_size / 2), 7 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.cleared_lines),
                    (self.width * self.block_size + int(self.block_size / 2), 8 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        if video:
            video.write(img)
        cv2.imshow("Deep Q-Learning Tetris", img)
        cv2.waitKey(1)

训练代码

import argparse
import os
import shutil
from random import random, randint, sample
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import time
from src.deep_q_network import DeepQNetwork
from src.tetris import Tetris
from collections import deque
def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Tetris""")
    parser.add_argument("--width", type=int, default=10, help="The common width for all images")
    parser.add_argument("--height", type=int, default=20, help="The common height for all images")
    parser.add_argument("--block_size", type=int, default=30, help="Size of a block")
    parser.add_argument("--batch_size", type=int, default=512, help="The number of images per batch")
    parser.add_argument("--lr", type=float, default=1e-3)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--initial_epsilon", type=float, default=1)
    parser.add_argument("--final_epsilon", type=float, default=1e-3)
    parser.add_argument("--num_decay_epochs", type=float, default=2000)
    parser.add_argument("--num_epochs", type=int, default=3000)
    parser.add_argument("--save_interval", type=int, default=500)
    parser.add_argument("--replay_memory_size", type=int, default=30000,
                        help="Number of epoches between testing phases")
    parser.add_argument("--log_path", type=str, default="tensorboard")
    parser.add_argument("--saved_path", type=str, default="trained_models")
    args = parser.parse_args()
    return args
def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size)
    model = DeepQNetwork()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()
    state = env.reset()
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()
    replay_memory = deque(maxlen=opt.replay_memory_size)
    epoch = 0
    t1 = time.time()
    total_time = 0
    best_score = 1000
    while epoch < opt.num_epochs:
        start_time = time.time()
        next_steps = env.get_next_states()
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * (
                opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        u = random()
        random_action = u <= epsilon
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        model.eval()
        with torch.no_grad():
            predictions = model(next_states)[:, 0]
        model.train()
        if random_action:
            index = randint(0, len(next_steps) - 1)
        else:
            index = torch.argmax(predictions).item()
        next_state = next_states[index, :]
        action = next_actions[index]
        reward, done = env.step(action, render=True)
        if torch.cuda.is_available():
            next_state = next_state.cuda()
        replay_memory.append([state, reward, next_state, done])
        if done:
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            state = env.reset()
            if torch.cuda.is_available():
                state = state.cuda()
        else:
            state = next_state
            continue
        if len(replay_memory) < opt.replay_memory_size / 10:
            continue
        epoch += 1
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, reward_batch, next_state_batch, done_batch = zip(*batch)
        state_batch = torch.stack(tuple(state for state in state_batch))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.stack(tuple(state for state in next_state_batch))
        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        print("state_batch",state_batch.shape)
        q_values = model(state_batch)
        model.eval()
        with torch.no_grad():
            next_prediction_batch = model(next_state_batch)
        model.train()
        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in
                  zip(reward_batch, done_batch, next_prediction_batch)))[:, None]
        optimizer.zero_grad()
        loss = criterion(q_values, y_batch)
        loss.backward()
        optimizer.step()
        end_time = time.time()
        use_time = end_time-t1 -total_time
        total_time = end_time-t1
        print("Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}, Used time: {}, total used time: {}".format(
            epoch,
            opt.num_epochs,
            action,
            final_score,
            final_tetrominoes,
            final_cleared_lines,
            use_time,
            total_time))
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1)
        if epoch > 0 and epoch % opt.save_interval == 0:
            print("save interval model: {}".format(epoch))
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch))
        elif final_score>best_score:
            best_score = final_score
            print("save best model: {}".format(best_score))
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, best_score))
if __name__ == "__main__":
    opt = get_args()
    train(opt)

结果展示

111.png

目录
相关文章
|
机器学习/深度学习 人工智能 项目管理
【机器学习】集成学习——Stacking模型融合(理论+图解)
【机器学习】集成学习——Stacking模型融合(理论+图解)
6589 1
【机器学习】集成学习——Stacking模型融合(理论+图解)
|
5月前
|
JSON API 数据格式
小红书笔记详情API,json数据返回
以下是一个模拟的小红书笔记详情的JSON数据返回示例,包含了笔记的基本信息、作者信息、内容、图片、标签以及互动数据(点赞、评论、收藏)等关键字段:
|
6月前
|
运维 数据可视化 安全
AR增强现实应用于工业4.0的5个案例研究
增强现实(AR)正重塑工业流程,通过实时可视化与数据叠加,提升效率、安全与质量。本文介绍AR在设备维护、汽车制造、质量控制及航空等领域的应用案例,展现其如何助力企业优化操作、减少错误并提升培训效果,推动智能化升级。
|
6月前
|
人工智能 搜索推荐 Linux
ollama部署本地DeepSeek大模型
本地部署大模型具有省钱省心、数据安全、使用自由、无需联网、量身定制及响应高效等优势。DeepSeek 提供满血版与多种蒸馏版模型,适配不同硬件条件。通过 Ollama 可便捷部署,并结合客户端工具如 AnythingLLM 提升交互体验,打造个性化本地 AI 助手。
706 0
Outlook邮箱怎么建立邮件组?
在Outlook中创建邮件组,登录邮箱后点击“联系人”,选择“新建联系人组”,命名并添加成员,保存即成。发邮件时直接写邮件组名,Outlook会自动填充成员。可编辑或删除组,高效管理邮件收发。
|
存储 前端开发 JavaScript
深入理解前端状态管理
【10月更文挑战第7天】深入理解前端状态管理
486 0
|
弹性计算 运维 安全
访问控制(RAM)|云上程序使用临时凭证的最佳实践
STS临时访问凭证是阿里云提供的一种临时访问权限管理服务,通过STS获取可以自定义时效和访问权限的临时身份凭证,减少长期访问密钥(AccessKey)泄露的风险。本文将为您介绍产品原理,以及具体的使用步骤。
151862 5
|
安全 Java Shell
Android13 adb input 调试命令使用和源码解析
Android13 adb input 调试命令使用和源码解析
2871 1
|
算法 C++ 容器
C++之vector容器操作(构造、赋值、扩容、插入、删除、交换、预留空间、遍历)
C++之vector容器操作(构造、赋值、扩容、插入、删除、交换、预留空间、遍历)
1072 0
|
缓存 算法 安全
Linux内存管理宏观篇(五)物理内存:页面分配和释放页面
Linux内存管理宏观篇(五)物理内存:页面分配和释放页面
802 1