强化学习DQN之俄罗斯方块

简介: 强化学习DQN之俄罗斯方块

强化学习DQN之俄罗斯方块


算法流程


本项目目的是训练一个基于深度强化学习的俄罗斯方块。具体来说,这个代码通过以下步骤实现训练:


首先设置一些随机数种子,以便在后面的训练中能够重现结果。


创建一个俄罗斯方块环境实例,这个环境是一个俄罗斯方块游戏,用于模拟AI与游戏的交互。


创建一个DeepQNetwork模型,这个模型是基于深度学习的强化学习模型,用于预测下一步的最佳行动。


创建一个优化器(optimizer)和一个损失函数(criterion),用于训练模型。


在每个训练时期(epoch)中,对于当前状态(state),计算所有可能的下一步状态(next_steps),根据一定的策略(exploration or exploitation)选择一个行动(action),并计算该行动带来的奖励(reward)和下一步是否为终止状态(done)。


将当前状态、奖励、下一步状态和终止状态添加到回放内存(replay memory)中。


如果当前状态为终止状态,则重置环境,并记录得分(final_score)、俄罗斯方块数量(final_tetrominoes)和消除的行数(final_cleared_lines)。


从回放内存中随机选择一批样本(batch),并将其用于训练模型。具体来说,将状态批次(state_batch)、奖励批次(reward_batch)、下一步状态批次(next_state_batch)和是否为终止状态批次(done_batch)分别取出,并将其分别转换为张量(tensor)。然后计算每个样本的目标值(target)y_batch,并用它来计算损失值(loss),并将损失值的梯度反向传播(backpropagation)。最后,使用优化器来更新模型参数。


输出当前训练时期的信息,并记录得分、俄罗斯方块数量和消除的行数到TensorBoard中。


如果当前训练时期为某个特定数的倍数,将模型保存到硬盘中。


重复上述步骤,直到达到指定的训练时期数。


文件目录结构

├── output.mp4
├── src
│   ├── deep_q_network.py                                    模型结构
│   └── tetris.py                                            游戏环境
├── tensorboard
│   └── events.out.tfevents.1676879249.aifs3-worker-2
├── test.py                                                  测试代码
├── trained_models                                           训练保存的模型
│   ├── tetris
│   ├── tetris_1000
│   ├── tetris_1500
│   ├── tetris_2000
│   └── tetris_500
└── train.py                                                 训练代码

模型结构

import torch.nn as nn
class DeepQNetwork(nn.Module):
    def __init__(self):
        super(DeepQNetwork, self).__init__()
        self.conv1 = nn.Sequential(nn.Linear(4, 64), nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(nn.Linear(64, 64), nn.ReLU(inplace=True))
        self.conv3 = nn.Sequential(nn.Linear(64, 1))
        self._create_weights()
    def _create_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.constant_(m.bias, 0)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        return x

游戏环境

import numpy as np
from PIL import Image
import cv2
from matplotlib import style
import torch
import random
style.use("ggplot")
class Tetris:
    piece_colors = [
        (0, 0, 0),
        (255, 255, 0),
        (147, 88, 254),
        (54, 175, 144),
        (255, 0, 0),
        (102, 217, 238),
        (254, 151, 32),
        (0, 0, 255)
    ]
    pieces = [
        [[1, 1],
         [1, 1]],
        [[0, 2, 0],
         [2, 2, 2]],
        [[0, 3, 3],
         [3, 3, 0]],
        [[4, 4, 0],
         [0, 4, 4]],
        [[5, 5, 5, 5]],
        [[0, 0, 6],
         [6, 6, 6]],
        [[7, 0, 0],
         [7, 7, 7]]
    ]
    def __init__(self, height=20, width=10, block_size=20):
        self.height = height
        self.width = width
        self.block_size = block_size
        self.extra_board = np.ones((self.height * self.block_size, self.width * int(self.block_size / 2), 3),
                                   dtype=np.uint8) * np.array([204, 204, 255], dtype=np.uint8)
        self.text_color = (200, 20, 220)
        self.reset()
    #---------------------------------------------------------------------------------------
    #  重置游戏
    #---------------------------------------------------------------------------------------
    def reset(self):
        self.board = [[0] * self.width for _ in range(self.height)]
        self.score = 0
        self.tetrominoes = 0
        self.cleared_lines = 0
        self.bag = list(range(len(self.pieces)))
        random.shuffle(self.bag)
        self.ind = self.bag.pop()
        self.piece = [row[:] for row in self.pieces[self.ind]]
        self.current_pos = {"x": self.width // 2 - len(self.piece[0]) // 2, "y": 0}
        self.gameover = False
        return self.get_state_properties(self.board)
    #---------------------------------------------------------------------------------------
    #  旋转方块
    #---------------------------------------------------------------------------------------
    def rotate(self, piece):
        num_rows_orig = num_cols_new = len(piece)
        num_rows_new = len(piece[0])
        rotated_array = []
        for i in range(num_rows_new):
            new_row = [0] * num_cols_new
            for j in range(num_cols_new):
                new_row[j] = piece[(num_rows_orig - 1) - j][i]
            rotated_array.append(new_row)
        return rotated_array
    #---------------------------------------------------------------------------------------
    #  获取当前游戏状态的一些属性
    #---------------------------------------------------------------------------------------
    def get_state_properties(self, board):
        lines_cleared, board = self.check_cleared_rows(board)
        holes = self.get_holes(board)
        bumpiness, height = self.get_bumpiness_and_height(board)
        return torch.FloatTensor([lines_cleared, holes, bumpiness, height])
    #---------------------------------------------------------------------------------------
    #  面板中空洞数量
    #---------------------------------------------------------------------------------------
    def get_holes(self, board):
        num_holes = 0
        for col in zip(*board):
            row = 0
            while row < self.height and col[row] == 0:
                row += 1
            num_holes += len([x for x in col[row + 1:] if x == 0])
        return num_holes
    #---------------------------------------------------------------------------------------
    #  计算游戏面板的凹凸度和亮度
    #---------------------------------------------------------------------------------------
    def get_bumpiness_and_height(self, board):
        board = np.array(board)
        mask = board != 0
        invert_heights = np.where(mask.any(axis=0), np.argmax(mask, axis=0), self.height)
        heights = self.height - invert_heights
        total_height = np.sum(heights)
        currs = heights[:-1]
        nexts = heights[1:]
        diffs = np.abs(currs - nexts)
        total_bumpiness = np.sum(diffs)
        return total_bumpiness, total_height
    #---------------------------------------------------------------------------------------
    #  获取下一个可能的状态
    #---------------------------------------------------------------------------------------
    def get_next_states(self):
        states = {}
        piece_id = self.ind
        curr_piece = [row[:] for row in self.piece]
        if piece_id == 0:  # O piece
            num_rotations = 1
        elif piece_id == 2 or piece_id == 3 or piece_id == 4:
            num_rotations = 2
        else:
            num_rotations = 4
        for i in range(num_rotations):
            valid_xs = self.width - len(curr_piece[0])
            for x in range(valid_xs + 1):
                piece = [row[:] for row in curr_piece]
                pos = {"x": x, "y": 0}
                while not self.check_collision(piece, pos):
                    pos["y"] += 1
                self.truncate(piece, pos)
                board = self.store(piece, pos)
                states[(x, i)] = self.get_state_properties(board)
            curr_piece = self.rotate(curr_piece)
        return states
    #---------------------------------------------------------------------------------------
    #  获取当前面板状态
    #---------------------------------------------------------------------------------------
    def get_current_board_state(self):
        board = [x[:] for x in self.board]
        for y in range(len(self.piece)):
            for x in range(len(self.piece[y])):
                board[y + self.current_pos["y"]][x + self.current_pos["x"]] = self.piece[y][x]
        return board
    #---------------------------------------------------------------------------------------
    #  添加新的方块
    #---------------------------------------------------------------------------------------
    def new_piece(self):
        if not len(self.bag):
            self.bag = list(range(len(self.pieces)))
            random.shuffle(self.bag)
        self.ind = self.bag.pop()
        self.piece = [row[:] for row in self.pieces[self.ind]]
        self.current_pos = {"x": self.width // 2 - len(self.piece[0]) // 2,
                            "y": 0
                            }
        if self.check_collision(self.piece, self.current_pos):
            self.gameover = True
    #---------------------------------------------------------------------------------------
    #  检查边界   输入:形状、位置
    #---------------------------------------------------------------------------------------
    def check_collision(self, piece, pos):
        future_y = pos["y"] + 1
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if future_y + y > self.height - 1 or self.board[future_y + y][pos["x"] + x] and piece[y][x]:
                    return True
        return False
    def truncate(self, piece, pos):
        gameover = False
        last_collision_row = -1
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if self.board[pos["y"] + y][pos["x"] + x] and piece[y][x]:
                    if y > last_collision_row:
                        last_collision_row = y
        if pos["y"] - (len(piece) - last_collision_row) < 0 and last_collision_row > -1:
            while last_collision_row >= 0 and len(piece) > 1:
                gameover = True
                last_collision_row = -1
                del piece[0]
                for y in range(len(piece)):
                    for x in range(len(piece[y])):
                        if self.board[pos["y"] + y][pos["x"] + x] and piece[y][x] and y > last_collision_row:
                            last_collision_row = y
        return gameover
    def store(self, piece, pos):
        board = [x[:] for x in self.board]
        for y in range(len(piece)):
            for x in range(len(piece[y])):
                if piece[y][x] and not board[y + pos["y"]][x + pos["x"]]:
                    board[y + pos["y"]][x + pos["x"]] = piece[y][x]
        return board
    def check_cleared_rows(self, board):
        to_delete = []
        for i, row in enumerate(board[::-1]):
            if 0 not in row:
                to_delete.append(len(board) - 1 - i)
        if len(to_delete) > 0:
            board = self.remove_row(board, to_delete)
        return len(to_delete), board
    def remove_row(self, board, indices):
        for i in indices[::-1]:
            del board[i]
            board = [[0 for _ in range(self.width)]] + board
        return board
    def step(self, action, render=True, video=None):
        x, num_rotations = action
        self.current_pos = {"x": x, "y": 0}
        for _ in range(num_rotations):
            self.piece = self.rotate(self.piece)
        while not self.check_collision(self.piece, self.current_pos):
            self.current_pos["y"] += 1
            if render:
                self.render(video)
        overflow = self.truncate(self.piece, self.current_pos)
        if overflow:
            self.gameover = True
        self.board = self.store(self.piece, self.current_pos)
        lines_cleared, self.board = self.check_cleared_rows(self.board)
        score = 1 + (lines_cleared ** 2) * self.width
        self.score += score
        self.tetrominoes += 1
        self.cleared_lines += lines_cleared
        if not self.gameover:
            self.new_piece()
        if self.gameover:
            self.score -= 2
        return score, self.gameover
    def render(self, video=None):
        if not self.gameover:
            img = [self.piece_colors[p] for row in self.get_current_board_state() for p in row]
        else:
            img = [self.piece_colors[p] for row in self.board for p in row]
        img = np.array(img).reshape((self.height, self.width, 3)).astype(np.uint8)
        img = img[..., ::-1]
        img = Image.fromarray(img, "RGB")
        img = img.resize((self.width * self.block_size, self.height * self.block_size))
        img = np.array(img)
        img[[i * self.block_size for i in range(self.height)], :, :] = 0
        img[:, [i * self.block_size for i in range(self.width)], :] = 0
        img = np.concatenate((img, self.extra_board), axis=1)
        cv2.putText(img, "Score:", (self.width * self.block_size + int(self.block_size / 2), self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.score),
                    (self.width * self.block_size + int(self.block_size / 2), 2 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, "Pieces:", (self.width * self.block_size + int(self.block_size / 2), 4 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.tetrominoes),
                    (self.width * self.block_size + int(self.block_size / 2), 5 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, "Lines:", (self.width * self.block_size + int(self.block_size / 2), 7 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        cv2.putText(img, str(self.cleared_lines),
                    (self.width * self.block_size + int(self.block_size / 2), 8 * self.block_size),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1.0, color=self.text_color)
        if video:
            video.write(img)
        cv2.imshow("Deep Q-Learning Tetris", img)
        cv2.waitKey(1)

训练代码

import argparse
import os
import shutil
from random import random, randint, sample
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import time
from src.deep_q_network import DeepQNetwork
from src.tetris import Tetris
from collections import deque
def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Tetris""")
    parser.add_argument("--width", type=int, default=10, help="The common width for all images")
    parser.add_argument("--height", type=int, default=20, help="The common height for all images")
    parser.add_argument("--block_size", type=int, default=30, help="Size of a block")
    parser.add_argument("--batch_size", type=int, default=512, help="The number of images per batch")
    parser.add_argument("--lr", type=float, default=1e-3)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--initial_epsilon", type=float, default=1)
    parser.add_argument("--final_epsilon", type=float, default=1e-3)
    parser.add_argument("--num_decay_epochs", type=float, default=2000)
    parser.add_argument("--num_epochs", type=int, default=3000)
    parser.add_argument("--save_interval", type=int, default=500)
    parser.add_argument("--replay_memory_size", type=int, default=30000,
                        help="Number of epoches between testing phases")
    parser.add_argument("--log_path", type=str, default="tensorboard")
    parser.add_argument("--saved_path", type=str, default="trained_models")
    args = parser.parse_args()
    return args
def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size)
    model = DeepQNetwork()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()
    state = env.reset()
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()
    replay_memory = deque(maxlen=opt.replay_memory_size)
    epoch = 0
    t1 = time.time()
    total_time = 0
    best_score = 1000
    while epoch < opt.num_epochs:
        start_time = time.time()
        next_steps = env.get_next_states()
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * (
                opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        u = random()
        random_action = u <= epsilon
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        model.eval()
        with torch.no_grad():
            predictions = model(next_states)[:, 0]
        model.train()
        if random_action:
            index = randint(0, len(next_steps) - 1)
        else:
            index = torch.argmax(predictions).item()
        next_state = next_states[index, :]
        action = next_actions[index]
        reward, done = env.step(action, render=True)
        if torch.cuda.is_available():
            next_state = next_state.cuda()
        replay_memory.append([state, reward, next_state, done])
        if done:
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            state = env.reset()
            if torch.cuda.is_available():
                state = state.cuda()
        else:
            state = next_state
            continue
        if len(replay_memory) < opt.replay_memory_size / 10:
            continue
        epoch += 1
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, reward_batch, next_state_batch, done_batch = zip(*batch)
        state_batch = torch.stack(tuple(state for state in state_batch))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.stack(tuple(state for state in next_state_batch))
        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        print("state_batch",state_batch.shape)
        q_values = model(state_batch)
        model.eval()
        with torch.no_grad():
            next_prediction_batch = model(next_state_batch)
        model.train()
        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in
                  zip(reward_batch, done_batch, next_prediction_batch)))[:, None]
        optimizer.zero_grad()
        loss = criterion(q_values, y_batch)
        loss.backward()
        optimizer.step()
        end_time = time.time()
        use_time = end_time-t1 -total_time
        total_time = end_time-t1
        print("Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}, Used time: {}, total used time: {}".format(
            epoch,
            opt.num_epochs,
            action,
            final_score,
            final_tetrominoes,
            final_cleared_lines,
            use_time,
            total_time))
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1)
        if epoch > 0 and epoch % opt.save_interval == 0:
            print("save interval model: {}".format(epoch))
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch))
        elif final_score>best_score:
            best_score = final_score
            print("save best model: {}".format(best_score))
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, best_score))
if __name__ == "__main__":
    opt = get_args()
    train(opt)

结果展示

111.png

目录
相关文章
|
机器学习/深度学习 存储 算法
【强化学习】常用算法之一 “DQN”
DQN算法是深度学习领域首次广泛应用于强化学习的算法模型之一。它于2013年由DeepMind公司的研究团队提出,通过将深度神经网络与经典的强化学习算法Q-learning结合,实现了对高维、连续状态空间的处理,具备了学习与规划的能力。本文对DQN算法进行了详细的讲解,包括发展史、算法公式和原理、功能、示例代码以及如何使用。DQN算法通过结合深度学习和Q-learning算法,实现了对高维、连续状态空间的处理,具备了学习和规划的能力。
1674 0
【强化学习】常用算法之一 “DQN”
|
4月前
|
机器学习/深度学习 存储 数据采集
强化学习系列:A3C算法解析
【7月更文挑战第13天】A3C算法作为一种高效且广泛应用的强化学习算法,通过结合Actor-Critic结构和异步训练的思想,实现了在复杂环境下的高效学习和优化策略的能力。其并行化的训练方式和优势函数的引入,使得A3C算法在解决大规模连续动作空间和高维状态空间的问题上表现优异。未来,随着技术的不断发展,A3C算法有望在更多领域发挥重要作用,推动强化学习技术的进一步发展。
|
5月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】XGBoost: 强化学习与梯度提升的杰作
在机器学习的广阔领域中,集成学习方法因其卓越的预测性能和泛化能力而备受瞩目。其中,XGBoost(Extreme Gradient Boosting)作为梯度提升决策树算法的杰出代表,自其诞生以来,便迅速成为数据科学竞赛和工业界应用中的明星算法。本文旨在深入浅出地介绍XGBoost的核心原理、技术优势、实践应用,并探讨其在模型调优与解释性方面的考量,为读者提供一个全面且深入的理解框架。
177 2
|
6月前
|
机器学习/深度学习 算法
深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)
深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)
265 0
|
机器学习/深度学习 算法 自动驾驶
【强化学习】常用算法之一 “PPO”
强化学习是一种通过智能体与环境的互动来学习最优行为策略的机器学习方法。相较于监督学习和无监督学习,强化学习的特点在于具有延迟奖赏和试错机制。在强化学习中,智能体通过选择动作来影响环境,并且从环境中获得奖励作为反馈。强化学习的目标是通过与环境的交互,使得智能体能够学会最优的行为策略。PPO算法属于策略优化(Policy Optimization)算法家族,是由OpenAI在2017年提出的。与其他策略优化算法相比,PPO算法具有较高的样本利用率和较好的收敛性能。
1309 1
【强化学习】常用算法之一 “PPO”
|
机器学习/深度学习 算法 知识图谱
【强化学习】常用算法之一 “SARSA”
强化学习是一种通过学习与环境交互来最大化累积奖励的方法。在强化学习中,一个智能体在特定环境中根据当前状态选择一个动作,执行该动作后,环境将转移到新的状态,并且智能体将获得奖励。强化学习的目标是通过学习,使智能体能够选择一系列能够获取最大累积奖励的动作序列,即找到最优策略。SARSA算法是一种基于状态-动作值的强化学习算法,用来学习最优策略。本文详细介绍了强化学习中的SARSA算法,包括其发展历程、算法原理、功能以及使用方法,并给出了求解迷宫问题的示例代码。
541 0
【强化学习】常用算法之一 “SARSA”
|
机器学习/深度学习 人工智能 自然语言处理
【ICLR2020】基于模型的强化学习算法玩Atari【附代码】
【ICLR2020】基于模型的强化学习算法玩Atari【附代码】
189 0
|
机器学习/深度学习 算法 决策智能
【ICLR2020】通过强化学习和稀疏奖励进行模仿学习
【ICLR2020】通过强化学习和稀疏奖励进行模仿学习
174 0
|
机器学习/深度学习 存储 算法
DQN、A3C、DDPG、IQN…你都掌握了吗?一文总结强化学习必备经典模型(一)
DQN、A3C、DDPG、IQN…你都掌握了吗?一文总结强化学习必备经典模型
411 0
|
机器学习/深度学习 存储 算法
强化学习之DQN论文介绍
强化学习之DQN论文介绍
210 0