【算法基础】拓扑排序及实战

简介: 在图论中,如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个**有向无环图(DAG,Directed Acyclic Graph)**

一 、概览

这里涉及到图的概念,感兴趣的同学请移驾 [-->图<--]
下面还有两个相关概念,大概说一下:

1.1 有向无环图

定义:在图论中,如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个有向无环图(DAG,Directed Acyclic Graph)
每条边都带有从一个顶点指向另一个顶点的方向的图为有向图。有向图中的道路为一系列的边,系列中每条边的终点都是下一条边的起点。
如果一条路径的起点是这条路径的终点,那么这条路径就是一个环。有向无环图即为没有环出现的有向图

1.2 拓扑结构

定义:将实体抽象成点,将实体间的链接抽象成线,进而以图形的关系呈现这些点与线之间的关系。其目的在于研究这些点、线之间的相连关系。表示点和线之间关系的图被称为拓扑结构 图

比较常用的是网络拓扑结构
在这里插入图片描述

背景:
一个较大的工程往往被划分成许多子工程,我们把这些子工程称作活动(activity)。在整个工程中,有些子工程(活动)必须在其它有关子工程完成之后才能开始,也就是说,一个子工程的开始是以它的所有前序子工程的结束为先决条件的,但有些子工程没有先决条件,可以安排在任何时间开始。为了形象地反映出整个工程中各个子工程(活动)之间的先后关系,可用一个有向图来表示,图中的顶点代表活动(子工程),图中的有向边代表活动的先后关系,即有向边的起点的活动是终点活动的前序活动,只有当起点活动完成之后,其终点活动才能进行。通常,我们把这种顶点表示活动、边表示活动间先后关系的有向图称做顶点活动网(Activity On Vertex network),简称AOV网。

二、拓扑排序(顶点的线性排序)

定义:在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列

例如,一个项目包括A、B、C、D四个子部分来完成,并且A依赖于B和D,C依赖于D。现在要制定一个计划,写出A、B、C、D的执行顺序。这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的。

且该序列必须满足下面两个条件:

  • 每个顶点出现且只出现一次。
  • 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
  • 有向无环图(DAG)才有拓扑排序

度数: 由一个顶点出发,有几条边就称该顶点有几度,或者该顶点的度数是几
出度: 由一个顶点出发的边的总数
入度: 指向一个顶点的边的总数

拓扑排序使用深度优先算法,时间复杂度为O ( V + E )

拓扑排序通常有几种实现方式:

2.1 入度表(直接遍历)

在这里插入图片描述
于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。
通常,一个有向无环图可以有一个或多个拓扑排序序列。

2.2 通过DFS(深度)和栈实现

思路:

找到顶点,递归遍历到最后的结点,通过回溯将遍历到的点入栈,那么先进栈的必定是只有入度的结点,只有出度的结点必定在最后进栈,最后通过出栈可以得到排序后的顺序。

具体代码请看 实战 2

2.3 通过队列实现

思路:

  • 通过遍历,将所有入度为0的进入队列。并将与之相连的结点的入度-1。
  • 然后一个一个的出队列,出队列的同时判断与出队列结点相连的结点是否入度为0,为0则进栈。
  • 循环第一二步,直到所有节点被选择或者栈空。(其实栈空的时候,所有节点就是被选择了)

不废话,直接上代码:

/**
 * 图的存储
 * 邻接矩阵 二维数组
 */
public static class GrapMatrix {


    /**
     * 节点个数
     */
    public int size;

    /**
     * 顶点名称
     */
    char [] nodeName;

    /**
     * 排序后的顺序
     */
    List result;

    /**
     * 图关系矩阵
     */
    int [][] matrix;

    /**
     *
     * @param nodeName 节点
     * @param edgs 节点关系
     */
    public GrapMatrix(char[] nodeName, char[][] edgs) {
        size = nodeName.length;
        this.nodeName = nodeName;
        // 设置图关系矩阵大小
        this.matrix = new int[size][size];
        result = new ArrayList<Integer>();

        // 初始化图关系矩阵
        for (char[] node: edgs) {
            matrix[getPosition(node[0])][getPosition(node[1])] = 1;
            System.out.println(node);
        }

        // 输出图的邻接矩阵
        for(int i = 0; i < size; i ++) {
            for (int j = 0; j < size; j ++) {
                System.out.print(matrix[i][j] + " ");
            }
            System.out.println("");
        }
    }

    // 排序
    public void tuopuSort() {
        System.out.println("\n");
        // 一个一维数组,用来保存顶点的入度
        int indegree[] = new int[size];
        boolean indegreeV[] = new boolean[size];


        // 给入度输入值
        for(int i = 0; i < size; i ++) {
            indegreeV[i] = false;
            for (int j = 0; j < size; j ++) {
                if (matrix[i][j] == 1) {
                    indegree[j] = indegree[j] + 1;
                }
            }
        }
        System.out.println("\n");

        //开始进行遍历
        LinkedList<String> nodes = new LinkedList<String>();

        // 将入度为 0 的节点入队列
        for (int x = 0; x < size; x ++) {
            if (indegree[x] == 0) {
                System.out.println(nodeName[x]);
                nodes.add(String.valueOf(nodeName[x]));
            }
        }

        int j = 0;
        while (!nodes.isEmpty()) {
            for (int x = 0; x < size; x ++) {
                System.out.println("\n 数组 x = " + x + ", ");
                if (indegree[x] == 0 && !indegreeV[x]) {

                    indegreeV[x] = true;
                    String s = nodes.poll();
                    System.out.println("add = " +s);
                    result.add(s);

                    // 找到跟它相关的节点,,入度 -1
                    for (int y = 0; y < size; y ++) {
                        if (matrix[x][y] == 1) {
                            System.out.println("相关的节点 -1 = " + y);
                            indegree[y] = indegree[y] - 1;
                            if (indegree[y] == 0) {
                                System.out.println("相关的节点 -1 后, 入度为0, " + nodeName[y]);
                                nodes.add(String.valueOf(nodeName[y]));
                            }
                        }
                    }
                } else {

                }
            }
            j ++;
        }


        System.out.println(result);

    }

    public int getPosition(char pos) {
        for (int i = 0; i < nodeName.length; i ++) {
            if (nodeName[i] == pos) {
                return i;
            }
        }
        return -1;
    }
}

三、实战

应用:
拓扑排序通常用来“排序”具有依赖关系的任务。
eg: 关键路径

     选课系统 
     等这些任务有先后顺序的图。

      比如,要想升职加薪,就要先拍马屁

3.1 选课系统

我们现在以课程排序来做代码测试,
假定一个计算机专业的学生必须完成下图所列出的全部课程。
在这里,课程代表活动,学习一门课程就表示进行一项活动,学习每门课程的先决条件是学完它的全部先修课程。
在这里插入图片描述
我们用图的方式,将他们的先后顺序及依赖关系表示如下:
在这里插入图片描述
对于---> 图 的存储结构,常用的是"邻接矩阵"和"邻接表",

拓扑排序的动态表示
https://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html

3.2 Android冷启动优化,有向无环图启动器

Application中初始化应用所需的业务、工具、UI等组件,导致耗时,导致冷启动会比较慢,需要进行优化处理,
在这里插入图片描述
我们要做的就是把主线程的串行任务变成并发任务,在将所有任务整理出来后,进行一个排序,

1、每一个业务模块当成一个任务,再梳理任务之间的关系。有的必须要在所以任务之前初始化,有的必须要在主线程初始化,有的可以有空在初始化,有的必须要在有的任务执行完毕再初始化,将这些任务的先后顺序及依赖关系用图画出来。
在这里插入图片描述

主进程执行, eg:推送,就不需要判断进程
主线程执行,eg:有的要主线程,有的要子线程

2、代码Task化,启动逻辑抽象为Task;
3、根据所有任务依赖关系排序生成一个有向无环图;
4、多线程按照排序后的优先级依次执行

关健代码

public class AppStartTaskSortUtil {
    /**
     * 拓扑排序
     * taskIntegerHashMap每个Task的入度(key= Class < ? extends AppStartTask>)
     * taskHashMap每个Task            (key= Class < ? extends AppStartTask>)
     * taskChildHashMap每个Task的孩子  (key= Class < ? extends AppStartTask>)
     * deque 入度为0的Task
     */
    public static List<AppStartTask> getSortResult(List<AppStartTask> startTaskList, HashMap<Class<? extends AppStartTask>, AppStartTask> taskHashMap, HashMap<Class<? extends AppStartTask>, List<Class<? extends AppStartTask>>> taskChildHashMap) {
        List<AppStartTask> sortTaskList = new ArrayList<>();
        HashMap<Class<? extends AppStartTask>, TaskSortModel> taskIntegerHashMap = new HashMap<>();
        Deque<Class<? extends AppStartTask>> deque = new ArrayDeque<>();
        for (AppStartTask task : startTaskList) {
            if (!taskIntegerHashMap.containsKey(task.getClass())) {
                taskHashMap.put(task.getClass(), task);
                taskIntegerHashMap.put(task.getClass(), new TaskSortModel(task.getDependsTaskList() == null ? 0 : task.getDependsTaskList().size()));
                taskChildHashMap.put(task.getClass(), new ArrayList<Class<? extends AppStartTask>>());
                //入度为0的队列
                if (taskIntegerHashMap.get(task.getClass()).getIn() == 0) {
                    deque.offer(task.getClass());
                }
            } else {
                throw new RuntimeException("任务重复了: " + task.getClass());
            }
        }
        //把孩子都加进去
        for (AppStartTask task : startTaskList) {
            if (task.getDependsTaskList() != null) {
                for (Class<? extends AppStartTask> aclass : task.getDependsTaskList()) {
                    taskChildHashMap.get(aclass).add(task.getClass());
                }
            }
        }
        //循环去除入度0的,再把孩子入度变成0的加进去
        while (!deque.isEmpty()) {
            Class<? extends AppStartTask> aclass = deque.poll();
            sortTaskList.add(taskHashMap.get(aclass));
            for (Class<? extends AppStartTask> classChild : taskChildHashMap.get(aclass)) {
                taskIntegerHashMap.get(classChild).setIn(taskIntegerHashMap.get(classChild).getIn() - 1);
                if (taskIntegerHashMap.get(classChild).getIn() == 0) {
                    deque.offer(classChild);
                }
            }
        }
        if (sortTaskList.size() != startTaskList.size()) {
            throw new RuntimeException("出现环了");
        }
        return sortTaskList;
    }
}
相关文章
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
98 8
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
111 7
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
28 1
|
2月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
77 9
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
41 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
70 2
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
70 4
|
2月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
34 0
|
2月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
81 0
|
4月前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
169 1