机器学习之数据分析常用方法

简介: 机器学习之数据分析常用方法

数据分析常用


1.单项类别统计

data["列属性"].value_counts(normalize=True)
normalize=True:
dtype: int64
N    0.753
Y    0.247
normalize=False:
Name: fraud_reported, dtype: float64
NY    262
SC    248

2.多项类别统计

data.unique()

3.设置行|列最大

pd.set_option('display.max_columns',500) 列
pd.set_option('display.max_rows',500)  行

4.根据一个属性统计另一个属性(不区分类别)画柱形图

ax = data.groupby('属性a').属性b.count().plot.bar(ylim=0)

5.根据一个属性统计另一个属性(区分类别)画柱形图

table =pd.crosstab(data.age,data.fraud_reported)  (行,列)
table.div(table.sum(1).astype(float),axis=0).plot(kind='bar',stacked=True)  因为列属性有两个类,所以使其总和为1显示

6.单属性画柱形图

ax = sns.countplot(x='属性',data=s)

7.画饼图

ax = (data['属性'].value_counts()*100.0/len(data)).plot.pie(autopct='%.1f%%',labels=['Male','Female'],fontsize=12)
#pie:表示饼图
#autopct:表示格式
#%.1f%%:第一个表示格式,.1f表示一位小数,%%表示百分号

8.inplace=True


true:直接在源数据上进行修改


false:创建新对象,然后覆盖


9.分箱操作

pd.cut(data.被划分的数据, bins, labels=names).astype(object)
bins:区间
lable:区间对应的标签

10.对多标签进行编码

数字编码:
1.LabelEncoder
from sklearn.preprocessing import LabelEncoder
x['标签后'] = LabelEncoder().fit_transform(dummies['标签前'])
2.map
class_dict = {
    'A': 1,
    'B': 2,
    'C': 3,
    'D': 4,
    'E': 5,
    'F': 6,
    'G': 7,
}
train_data['class'] = train_data['class'].map(class_dict)

11.数据标准化

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler(with_mean=False)
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
StandardScaler:计算均值和方差
fit_transform:训练数据用的
transform:测试数据用的

12.随机森林(等算法)进行交叉验证

#随机森林
rfc = RandomForestClassifier(n_estimators=200)
#数据划分K折
kfold = KFold(n_splits=5, shuffle=True,random_state=7)
#交叉验证
result2 = cross_val_score(rfc, x_train_scaled, y_train, cv=kfold, scoring='accuracy')
#xgboot
xgb = XGBClassifier()
#逻辑回归
logreg= LogisticRegressionCV(solver='lbfgs', cv=cv)
#KNN
knn = KNeighborsClassifier(5)
#SVC
svcl = SVC()
#ADAboost
adb = AdaBoostClassifier()
#决策树
dt = DecisionTreeClassifier(max_depth=5)
#随机森林
rf = RandomForestClassifier()
#LDA 线性判别
lda = LinearDiscriminantAnalysis()
#
gnb = GaussianNB()

13.逻辑回归算法


正则化选择参数:penalty


  • L1:预测效果差、模型特征多,需要让一些不重要的特征系数归零,从而让模型稀疏化
    solver只能选择liblinear,因为l1正则化损失函数不是连续可导的,而其他三种都是需要二阶导数

  • L2:解决过拟合
    solver四种皆可


优化算法选择参数:solver


  • liblinear:坐标轴下降法

  • lbfgs:二阶导数

  • newton-cg:二阶导数

  • sag:随机梯度下降

分类方式选择参数:multi_class


ovr
mvm
二元 相同 相同
多元 略差,速度快 精确,速度慢
solver 四种皆可 除了liblinear皆可

类型权重参数:class_weight


默认:不考虑权重


balance:根据数据量自动分配,样本量越多,权重越低


自定义权重比例:{0:0.9,1:0.1}


样本权重参数:sample_weight


在调用fit函数时使用


若class__weight 和 sample_weight都使用,权重就是


class__weight *sample_weight


正则化参数:C

C=[0.01,0.1,1,10,100]
从中选出最好的

列子

from sklearn import linear_model
logistic = linear_model.LogisticRegression()  
#如果用正则化,可以添加参数penalty,可以是l1正则化(可以更有效的抵抗共线性),也可以是l2正则化,如果是类别不均衡的数据集,可以添加class_weight参数,这个可以自己设置,也可以让模型自己计算
logistic = linear_model.LogisticRegression( penalty='l1', class_weight='balanced')
logistic.fit(X_train,y_train)
y_pred = logistic.predict( X_test)
#如果只想预测概率大小,可以用下面这个函数
y_pred = logistic.predict_proba(X_test)

14.AdaBoostClassifier


基分类器:base_estimator


默认是决策树


若为其他,则要指定样本权重


迭代次数:n_estimator


默认50次


学习率:learning_rate


默认1


模型提升准则:algorithm


samme:样本集预测错误的概率进行划分


samme.r:(默认)样本集预测错误的比例进行划分


随机种子:random_state


15.Xgboost

params = {
'booster': 'gbtree', 
'objective': 'multi:softmax', # 多分类的问题 
'num_class': 10, # 类别数,与 multisoftmax 并用 
'gamma': 0.1, # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。 
'max_depth': 12, # 构建树的深度,越大越容易过拟合 
'reg_lambda': 2, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。 
'subsample': 0.7, # 随机采样训练样本 
'colsample_bytree': 0.7, # 生成树时进行的列采样 
'min_child_weight': 3, 
'silent': 1, # 设置成1则没有运行信息输出,最好是设置为0. 
'learning_rate': 0.007, # 如同学习率 
'reg_alpha':0, # L1 正则项参数
'seed': 1000, 
'nthread': 4, # cpu 线程数 
}

16.KNN


n_neighbors : int,optional(default = 5)

默认情况下kneighbors查询使用的邻居数。就是k-NN的k的值,选取最近的k个点。


weights : str或callable,可选(默认=‘uniform’)

默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收距离的数组,返回一组维数相同的权重。


algorithm : {‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选

快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。ball

tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。


leaf_size : int,optional(默认值= 30)

默认是30,这个是构造的kd树和ball树的大小。这个值的设置会影响树构建的速度和搜索速度,同样也影响着存储树所需的内存大小。需要根据问题的性质选择最优的大小。


p : 整数,可选(默认= 2)

距离度量公式。在上小结,我们使用欧氏距离公式进行距离度量。除此之外,还有其他的度量方法,例如曼哈顿距离。这个参数默认为2,也就是默认使用欧式距离公式进行距离度量。也可以设置为1,使用曼哈顿距离公式进行距离度量。


metric : 字符串或可调用,默认为’minkowski’

用于距离度量,默认度量是minkowski,也就是p=2的欧氏距离(欧几里德度量)。


metric_params : dict,optional(默认=None)

距离公式的其他关键参数,这个可以不管,使用默认的None即可。


n_jobs : int或None,可选(默认=None)

并行处理设置。默认为1,临近点搜索并行工作数。如果为-1,那么CPU的所有cores都用于并行工作。


17.特征筛选

from sklearn.feature_selection import SelectFromModel
from numpy import sort
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
#搭建模型并训练
xgb = XGBClassifier()
xgb.fit(x_train_scaled,y_train)
xgb_pred = xgb.predict(X_test_scaled)
predictions = [round(value) for value in xgb_pred]
accuracy = accuracy_score(xgb_pred,y_test)
print("Accuracy: %.2f%%"%(accuracy*100.0))
#获取特征重要程度排行值
thresholds = sort(xgb.feature_importances_)
#根据排行值进行特征的选择
for threshold in thresholds:
    selected = SelectFromModel(xgb,threshold=threshold,prefit=True)
    selected_x_train = selected.transform(x_train_scaled)
    selected_model = XGBClassifier()
    selected_model.fit(selected_x_train,y_train)
    selected_x_test = selected.transform(X_test_scaled)
    selected_predict = selected_model.predict(selected_x_test)
    selected_predictions = [round(values) for values in selected_predict]
    selected_accuracy = accuracy_score(y_test,selected_predict)
    print("Thresholds: %.3f,n=%d,Accuracy: %.2f%%"%(threshold,selected_x_train.shape[1],selected_accuracy*100.0))
画图查看重要程度
from xgboost import XGBClassifier,plot_importance
xgb = XGBClassifier()
xgb.fit(x_train_scaled,y_train)
plt.rcParams['figure.figsize']=[25,20]
plot_importance(xgb)
plt.show()

18.查看当前模型参数

from pprint import pprint
pprint(xgb.get_params())

19.网格搜索GridSearchCV()

1.estimator
选择使用的分类器,并且传入除需要确定最佳的参数之外的其他参数。
每一个分类器都需要一个scoring参数,或者score方法:
如estimator=RandomForestClassifier(
min_samples_split=100,
min_samples_leaf=20,
max_depth=8,
max_features=‘sqrt’,
random_state=10),
2.param_grid
需要最优化的参数的取值,值为字典或者列表,例如:
param_grid =param_test1,
param_test1 = {‘n_estimators’:range(10,71,10)}。
scoring=None
模型评价标准,默认None,这时需要使用score函数;或者如scoring=‘roc_auc’,
根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,
需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。
4.n_jobs=1
n_jobs: 并行数,int:个数,-1:跟CPU核数一致, 1:默认值
5.cv=None
交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield产生训练/测试数据的生成器。
6.verbose=0, scoring=None
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。
7.pre_dispatch=‘2*n_jobs’
指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,
而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次
8.return_train_score=’warn’
如果“False”,cv_results_属性将不包括训练分数。
9.refit :默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,
作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。
10.iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。


目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
115 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
20天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
57 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
37 6
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
145 1
|
2月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
36 2
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
91 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
3月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
68 2
|
3月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
3月前
|
机器学习/深度学习 算法 数据挖掘
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【10月更文挑战第4天】在数据科学领域,模型评估是连接理论与实践的桥梁,帮助我们理解模型在未知数据上的表现。对于初学者而言,众多评估指标和工具常令人困惑。幸运的是,Scikit-learn 这一强大的 Python 库使模型评估变得简单。本文通过问答形式,带你逐步掌握 Scikit-learn 的评估技巧。Scikit-learn 提供了丰富的工具,如交叉验证、评分函数(准确率、精确率、召回率、F1 分数)、混淆矩阵和 ROC 曲线等。
51 1