卷积神经网络精度提升的经验
- 1.网络深度的增加,典型的如resnet,就是通过残差网络的堆叠,增加网络层数,以此来提升精度。
- 2.网络宽度的增加,通过增加每层网络的特征层数,提取更多的特征,以此来提升精度。
- 3.图像分辨率的增加,分辨率越高的图像,所能获取的信息越多,网络能够学习到更多的特征,从而提升精度。
EfficientNet特点
历史的实验经验表明,对于卷积神经网络的提升,着重点在于网络深度,网络宽度,分辨率这三个维度。因此,efficientnet应运而生,efficientnet结合了这三个优点,很好的平衡深度、宽度和分辨率这三个维度,通过一组固定的缩放系数统一缩放这三个维度。举个栗子,如果我们需要使用2ⁿ 的计算机资源,我们可以对网络深度放大αⁿ,对网络宽度放大βⁿ,对分辨率放大γⁿ。
如上图,(a)是baseline基准网络。(b)是网络宽度的缩放。(c)是网络深度的缩放。(d)是分辨率的缩放。(e)是平衡综合网络深度,网络宽度,分辨率三个维度。
其中,baseline基准网络是通过网络结构搜索得到,基于baseline基准网络进行放大得到的一系列网络就是EfficientNet网络。
如下图,是EfficientNet和其他网络的比较,我们可以看出EfficientNet相对于其他网络,有了质的突破。
上图为EfficientNetB0的结构,B1到B7都是在此基础上进行的缩放。EfficientNetB0主要的结构在于MBConv结构的堆叠。
如图,就是这一结构的详细组成
下面是基于keras框架下的这一模块的具体实现。
def block(inputs, activation='swish', drop_rate=0., name='', filters_in=32, filters_out=16, kernel_size=3, strides=1, expand_ratio=1, se_ratio=0., id_skip=True): bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 # 升维设置 filters = filters_in * expand_ratio #利用1*1的卷积核进行维度的提升 if expand_ratio != 1: x = layers.Conv2D( filters, 1, padding='same', use_bias=False, kernel_initializer=CONV_KERNEL_INITIALIZER, name=name + 'expand_conv')( inputs) x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x) x = layers.Activation(activation, name=name + 'expand_activation')(x) else: x = inputs # 深度可分离 2D 卷积。 if strides == 2: x = layers.ZeroPadding2D( padding=imagenet_utils.correct_pad(x, kernel_size), name=name + 'dwconv_pad')(x) conv_pad = 'valid' else: conv_pad = 'same' x = layers.DepthwiseConv2D( kernel_size, strides=strides, padding=conv_pad, use_bias=False, depthwise_initializer=CONV_KERNEL_INITIALIZER, name=name + 'dwconv')(x) x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x) x = layers.Activation(activation, name=name + 'activation')(x) #压缩放大的系数 if 0 < se_ratio <= 1: filters_se = max(1, int(filters_in * se_ratio)) se = layers.GlobalAveragePooling2D(name=name + 'se_squeeze')(x) se = layers.Reshape((1, 1, filters), name=name + 'se_reshape')(se) se = layers.Conv2D( filters_se, 1, padding='same', activation=activation, kernel_initializer=CONV_KERNEL_INITIALIZER, name=name + 'se_reduce')( se) se = layers.Conv2D( filters, 1, padding='same', activation='sigmoid', kernel_initializer=CONV_KERNEL_INITIALIZER, name=name + 'se_expand')(se) x = layers.multiply([x, se], name=name + 'se_excite') # 利用1*1的卷积核进行压缩 x = layers.Conv2D( filters_out, 1, padding='same', use_bias=False, kernel_initializer=CONV_KERNEL_INITIALIZER, name=name + 'project_conv')(x) x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x) #残差网络的实现 if id_skip and strides == 1 and filters_in == filters_out: if drop_rate > 0: x = layers.Dropout( drop_rate, noise_shape=(None, 1, 1, 1), name=name + 'drop')(x) x = layers.add([x, inputs], name=name + 'add') return x