力扣35搜索插入位置:思路分析+图文详解+代码实现+拓展java源码

简介: 力扣35搜索插入位置:思路分析+图文详解+代码实现+拓展java源码

第一部分:题目描述

🏠 链接:35. 搜索插入位置 - 力扣(LeetCode)

⭐ 难度:简单

第二部分:思路分析

我们可以先看下普通二分查找的代码:满足了查到返回索引,查不到返回-1

public int search(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        int mid;
        while (left <= right) {
            // 得到中间索引
            /*
                考虑到 left+right 的值可能会超过 int可表示 的最大值,我们不再对他们的和直接除以2
                我们知道 除以2 的操作可以用 位运算 >>1 来代替
                但还不够,由于 (left+right) 值溢出表示负数,>>1 只是做 除以2 操作,最高位符号位不变,依旧为1表示负数,负数除以2依旧是负数
                这时候我们可以修改为 无符号右移 >>>1 ,低位溢出,高位补0,那么最高位符号位为0就表示正数了
             */
            mid = (left + right) >>> 1;
            if (target < nums[mid]) {
                // 如果目标值小于中间值
                right = mid - 1;
            } else if (nums[mid] < target) {
                // 如果目标值大于中间值
                left = mid + 1;
            } else {
                return mid;
            }
        }
        return -1;
    }

而这道题目的要求是:查到返回索引,查不到返回应该插入位置的索引。

我们可以这样来分析:

  1. 如果能够查询得到,还是走原来的逻辑,即 else 块中的 return mid
  2. 如果查询不到,你首先必须肯定这样一件事:
  • 全部搜索完还查找不到时 while 循环会退出
  • 具体是为什么会退出呢?==》left <= right 的条件不成立,即 left > right,更具体的说是 right + 1 == left 了。

  1. 紧接着,我们又必须赞成一件事:
  • 在 left > right ,即 right + 1 == left 之前的while循环中,肯定有 left == right 成立

  • 在以 left == right 为循环条件的循环体中,进行了 if 语句的right指针向左移动 或者 else-if 语句的left指针向右移动,而导致出现了 right + 1 == left ,自此循环退出。
  1. 那么这个时候就很好分析了,我们知道了最后一次循环时的循环条件是left == right,至于是if 语句的right指针向左移动还是else-if 语句的left指针向右移动都有可能,我们分这两种情况进行分析:
  • if 语句的right指针向左移动

    当目标值小于 中间索引mid对应值 时,会走 if 语句导致 right 指针左移,自此 while 循环会结束。

    对于是一个从小到大排序的升序数组,我们知道插入位置应该放在 中间索引mid 的前面,即插入位置应当就是 当前中间索引mid ,那不就是 left指针 的位置吗?
  • else-if 语句的left指针向右移动

    当目标值大于 中间索引mid对应值 时,会走 else-if 语句导致 left 指针右移,自此 while 循环会结束。

    对于是一个从小到大排序的升序数组,我们知道插入位置应该放在 中间索引mid 的后面,而最后一次循环操作后 left 指针从原来的 mid 位置右移了一位,那插入位置不就是最终 left指针 的位置吗?
  1. 因此,综上所述
  • 查找到了,就是原二分查找的 return mid
  • 未查找到,就是最终 left指针 的位置。 因此只需要将 return -1 改为 return left 即可。

第三部分:代码实现

public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        int mid;
        while (left <= right) {
            // 得到中间索引
            /*
                考虑到 left+right 的值可能会超过 int可表示 的最大值,我们不再对他们的和直接除以2
                我们知道 除以2 的操作可以用 位运算 >>1 来代替
                但还不够,由于 (left+right) 值溢出表示负数,>>1 只是做 除以2 操作,最高位符号位不变,依旧为1表示负数,负数除以2依旧是负数
                这时候我们可以修改为 无符号右移 >>>1 ,低位溢出,高位补0,那么最高位符号位为0就表示正数了
             */
            mid = (left + right) >>> 1;
            if (target < nums[mid]) {
                // 如果目标值小于中间值
                right = mid - 1;
            } else if (nums[mid] < target) {
                // 如果目标值大于中间值
                left = mid + 1;
            } else {
                return mid;
            }
        }
        return left;
    }

第四部分:拓展-Java底层源码对二分查找的实现

⭐ 在 Arrays 类中的方法 binarySearch0(int[] a, int fromIndex, int toIndex, int key),源码如下:

/**
     * 使用二进制搜索算法在指定的整数数组中搜索指定的值。在进行此调用之前,必须对数组进行排序(按方法排序 sort(int[]) )。
     * 如果未排序,则结果未定义。如果数组包含多个具有指定值的元素,则无法保证会找到哪个元素。
     * 参数:
   *    a – 要搜索的数组 
   *    key – 要搜索的值
   * 返回:搜索键的索引(如果它包含在数组中);否则,( -(插入点)-1)。
   * 插入点定义为将键插入数组的 点 :第一个元素的索引大于键,如果数组中的所有元素都小于指定的键,则为 a.length 。
   * 请注意,这保证了当且仅当找到键时返回值将为 >= 0。
     */
    public static int binarySearch(int[] a, int key) {
        return binarySearch0(a, 0, a.length, key);
    }
    // Like public version, but without range checks.
    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
                                     int key) {
        int low = fromIndex;
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            int midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

第五部分:拓展-利用Arrays实现二分查找目标值,不存在则插入

public static void main(String[] args) {
        // 二分查找目标值,不存在则插入
        /*
            原始数组:[2,5,8]
            查找目标值:4
            查询不到,返回的结果为 r = -待插入点索引-1
            在这里带插入点索引为 1,对应 r = -2
            那么我们分成这几步来进行拷贝:
                - 1.新建数组,大小为原数组的大小+1:         [0,0,0,0]
                - 2.将待插入点索引之前的数据放入新数组:     [2,0,0,0]
                - 3.将目标值放入到待插入点索引的位置:       [2,4,0,0]
                - 4.将原数组后面的数据都相继拷贝到新数组后面: [2,4,5,8]
         */
        // 定义原数组与目标值
        int[] oldArray = {2, 5, 8};
        int target = 4;
        // 搜索目标值4,没有找到,返回结果为 r =  -待插入点索引-1,这里的 r=-2
        int r = Arrays.binarySearch(oldArray, target);
        // r < 0 说明没有找到目标值,就插入
        if (r < 0) {
            // 获取待插入索引
            int insertIndex = -r - 1;
            // 1.新建数组,大小为原数组的大小+1
            int[] newArray = new int[oldArray.length + 1];
            // 2.将待插入点索引之前的数据放入新数组
            System.arraycopy(oldArray, 0, newArray, 0, insertIndex);
            // 3.将目标值放入到待插入点索引的位置
            newArray[insertIndex] = target;
            // 4.将原数组后面的数据都相继拷贝到新数组后面
            System.arraycopy(oldArray, insertIndex, newArray, insertIndex + 1, oldArray.length - insertIndex);
            System.out.println(Arrays.toString(newArray));
        }
    }

第六部分:拓展-(left + right) >>> 1的分析

在本文中我使用的是 (left + right) >>> 1 来代替 (left + right) / 2,目的是解决 left + right 超过int最大值 的问题。

我们先来举个模拟问题的发生:

public static void main(String[] args) {
        // 模拟 二分查找中的 left
        int left = 100;
        // 模拟 二分查找中的 right
        int right = Integer.MAX_VALUE - 1;
        // 此时 left+right 的值超过了 int范围 的最大值,导致 left + right 的结果为负数
        // 然后对负数进行除以2操作,结果依旧为负数
        int mid = (left + right) / 2;
        // 输出结果为 -1073741775
        System.out.println(mid);
    }

那如何解决这个问题呢?我们可以使用 位运算 来代替 /2 的操作。

  • 算数右移 >> :低位溢出,符号位不变,并用符号位补溢出的高位。
  • 逻辑右击(无符号右移)>>>:低位溢出,高位补0。

由于最高位符号位为0表示该数为正数,因此相比于 >> 做到了能将一个 负数 无符号右移后变成 正数。

第七部分:方法-返回≥目标的最靠左索引

除了使用第三部分的代码实现方法,还可以使用 Leftmost 方式解决该问题:

具体解释参考:力扣704二分查找:思路分析+代码实现(递归与非递归)_是谢添啊的博客-CSDN博客

public int searchInsert(int[] array, int target) {
        int left = 0;
        int right = array.length - 1;
        int mid;
        while (left <= right) {
            mid = (left + right) >>> 1;
            if (target <= array[mid]) {
                // array[mid] 满足大于等于目标值,因此可以记录
                right = mid - 1;
            } else if (array[mid] < target) {
                // 目标值大于中间索引值,缩小左范围
                left = mid + 1;
            }
        }
        // 返回结果
        return left;
    }


相关文章
|
17天前
|
XML Java 编译器
Java注解的底层源码剖析与技术认识
Java注解(Annotation)是Java 5引入的一种新特性,它提供了一种在代码中添加元数据(Metadata)的方式。注解本身并不是代码的一部分,它们不会直接影响代码的执行,但可以在编译、类加载和运行时被读取和处理。注解为开发者提供了一种以非侵入性的方式为代码提供额外信息的手段,这些信息可以用于生成文档、编译时检查、运行时处理等。
53 7
|
9天前
|
存储 JavaScript 前端开发
基于 SpringBoot 和 Vue 开发校园点餐订餐外卖跑腿Java源码
一个非常实用的校园外卖系统,基于 SpringBoot 和 Vue 的开发。这一系统源于黑马的外卖案例项目 经过站长的进一步改进和优化,提供了更丰富的功能和更高的可用性。 这个项目的架构设计非常有趣。虽然它采用了SpringBoot和Vue的组合,但并不是一个完全分离的项目。 前端视图通过JS的方式引入了Vue和Element UI,既能利用Vue的快速开发优势,
60 13
|
8天前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
45 2
|
23天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
51 12
|
17天前
|
JavaScript 安全 Java
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。
|
22天前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
60 5
|
22天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
48 5
|
23天前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
|
19天前
|
人工智能 移动开发 安全
家政上门系统用户端、阿姨端源码,java家政管理平台源码
家政上门系统基于互联网技术,整合大数据分析、AI算法和现代通信技术,提供便捷高效的家政服务。涵盖保洁、月嫂、烹饪等多元化服务,支持多终端访问,具备智能匹配、在线支付、订单管理等功能,确保服务透明、安全,适用于家庭生活的各种需求场景,推动家政市场规范化发展。
|
21天前
|
安全 Java API
Java中的Lambda表达式:简化代码的现代魔法
在Java 8的发布中,Lambda表达式的引入无疑是一场编程范式的革命。它不仅让代码变得更加简洁,还使得函数式编程在Java中成为可能。本文将深入探讨Lambda表达式如何改变我们编写和维护Java代码的方式,以及它是如何提升我们编码效率的。