玩转Matplotlib的10个高级技巧

简介: Matplotlib是Python中流行的数据可视化库,仅使用简单的几行代码就可以生成图表。但是默认的方法是生成的图表很简单,如果想增强数据演示的影响和清晰度,可以试试本文总结的10个高级技巧,这些技巧可以将可视化提升到一个新的水平:

1、rcParams

rcParams字典。它包含了用于创建图形的默认样式的所有Matplotlib设置。你可以直接从matplotlib命名空间导入它:

 from matplotlib import rcParams
 >>> rcParams
 ...
 'axes.grid': False,
 'axes.grid.axis': 'both',
 'axes.grid.which': 'major',
 'axes.labelcolor': 'black',
 'axes.labelpad': 4.0,
 'axes.labelsize': 'medium',
 'axes.labelweight': 'normal',
 'axes.linewidth': 0.8,
 ...

 rcParams['figure.figsize'] = 8, 6
 rcParams['legend.fontsize'] = "large"
 rcParams['xtick.major.size'] = 4
 rcParams['xtick.minor.size'] = 1

这时所有的Matplotlib设置,如果你想修改任何的Matplotlib参数,直接修改这个字典就可以了,你甚至可以将他序列化到本地,然后在其他项目中直接加载,这样你的每一个Matplotlib实例使用的都是相同的配置了。

还可以调用PyPlot的rcdefaults函数,它会将所有参数重置成默认值。

 plt.rcdefaults()

2、get_* functions

在底层,Matplotlib是完全面向对象的。

上图中看到的每个单独的组件都是作为一个单独的类实现的。它们都继承自基类Matplotlib Artist。

但是类太多,并且每个类的参数都不一样这会给使用带来很大的不方便,所以Matplotlib定制了有许多以get_前缀开头的函数,可以直接创建图形中的组件。下面是一个例子:

 fig, ax = plt.subplots()

 >>> [func for func in dir(ax) if func.startswith("get")]

 ['get_adjustable',
  'get_label',
  'get_legend',
  'get_legend_handles_labels',
  'get_lines',
  'get_navigate',
  'get_title',
  'get_transform',
  'get_xmajorticklabels',
  'get_xminorticklabels',
  'get_xscale',
  'get_xticklabels',
  'get_zorder']

假设我们想自定义一个图形的坐标:

 x = np.linspace(0, 2, 100)

 fig, ax = plt.subplots()  # Create a figure and an axes.

 l1 = ax.plot(x, x, label="linear")
 l2 = ax.plot(x, x ** 2, label="quadratic")
 l3 = ax.plot(x, x ** 3, label="cubic")

 ax.set_title("Simple Plot")

 plt.show()

这很简单,只需在axes对象上调用get_xticklabels,就可以得到Matplotlib Text实例的列表:

 >>> ax.get_xticklabels()

 [Text(0, 0, 'Ideal'),
  Text(1, 0, 'Premium'),
  Text(2, 0, 'Very Good'),
  Text(3, 0, 'Good'),
  Text(4, 0, 'Fair')]

还可以使用get_xticklines调整刻度线,或者使用get_xticks调整刻度的位置。

已经获得了对象,下面就可以进行调整了

3、get / setp

调用plt.getp函数,可以查看它当前具有的参数。例如,假设我们想要样式化下面图的l2:

 x = np.linspace(0, 2, 100)

 fig, ax = plt.subplots()  # Create a figure and an axes.

 l1 = ax.plot(x, x, label="linear")
 l2 = ax.plot(x, x ** 2, label="quadratic")
 l3 = ax.plot(x, x ** 3, label="cubic")

 ax.set_title("Simple Plot")

 plt.show()

这个方法返回了图表的所有属性

 >>> plt.getp(l2)
     ...
     drawstyle or ds = default
     figure = Figure(640x480)
     linestyle or ls = -
     linewidth or lw = 1.5
     marker = None
     markeredgecolor or mec = #ff7f0e
     markeredgewidth or mew = 1.0
     markerfacecolor or mfc = #ff7f0e
     markerfacecoloralt or mfcalt = none
     zorder = 2
     ...

而plt.setp可以更改属性在没有任何参数的对象上调用this会打印出该对象可以接受的属性值:

 >>> plt.setp(l2)
   ...
   linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
   linewidth or lw: float
   sketch_params: (scale: float, length: float, randomness: float)
   snap: bool or None
   zorder: float
   ...

要打印单个属性的可能值,可以将属性的名称作为字符串输入setp:

 >>> plt.setp(l2, "linestyle")
 linestyle: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

修改属性的方法如下:

 >>> plt.setp(l2, linestyle="-.", lw=5, color="red", alpha=0.5)
 [None, None, None, None]

要查看更改后的当前图形,只需在图形对象上调用get_figure:

 fig.get_figure()

第二行的样式已经变了

4、Legends

Legends可以方便的告诉我们图中每个组件的含义,默认是这样显示的:

 x = np.linspace(0, 2, 100)

 fig, ax = plt.subplots()  # Create a figure and an axes.

 l1 = ax.plot(x, x, label="linear")
 l2 = ax.plot(x, x ** 2, label="quadratic")
 l3 = ax.plot(x, x ** 3, label="cubic")

 ax.set_title("Simple Plot")

 ax.legend()

 plt.show()

我们可以调整他的参数,例如:

图例的位置、字体属性、大小,颜色,样式、图例中的列数,等等

可以在创建前设置,也可以在创建后使用get_legend提取,并使用getp、setp函数。

5、cycler

你有没有想过Matplotlib是如何自己改变颜色或循环不同风格的?

在底层,Matplotlib使用名为Cyclers的Python内置对象:

 from cycler import cycler

 c1 = cycler(arg1=[1, 2, 3, 4])
 >>> c1

这个循环函数接受任何键值参数并创建一个字典列表:

 c2 = cycler(arg2=list("rgba"))

 for i in c2:
     print(i)

 ------------------------------

 {'arg2': 'r'}
 {'arg2': 'g'}
 {'arg2': 'b'}
 {'arg2': 'a'}

还可以将多个循环器与“plus”和“multiply”操作符组合起来,这样可以获得索引到索引或穷举的参数组合:

 for i in c1 + c2:
     print(i)

 --------------------------------

 {'arg1': 1, 'arg2': 'r'}
 {'arg1': 2, 'arg2': 'g'}
 {'arg1': 3, 'arg2': 'b'}
 {'arg1': 4, 'arg2': 'a'}

将这个自定义循环器并将其传递给Matplotlib,就可以定制样式。下面,我们创建四种不同的线条样式,允许Matplotlib循环使用不同的线条颜色,样式和大小:

 line_prop_cycler = (
     cycler(color=list("rgcy"))
     + cycler(ls=["-", "--", "-.", ":"])
     + cycler(lw=[3, 6, 9, 12])
 )

可以使用axes对象的set_prop_cycle函数将这个自定义循环器传递给绘图:

 x = np.linspace(0, 2 * np.pi, 50)
 offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False)
 yy = np.transpose([np.sin(x + phi) for phi in offsets])

 fig, ax = plt.subplots(figsize=(8, 4))

 ax.set_prop_cycle(line_prop_cycler)  # Set propcycle before plotting
 ax.plot(x, yy)

 plt.show();

rcParams字典中默认设置如下:

 rcParams["axes.prop_cycle"]

我们可以直接修改

6、tick_params

轴刻度应该准确地传达数据点及其单位的最小值和最大值,并显示几个关键的检查点,以便在不同的绘图部分之间进行比较。

大多数tick属性可以使用axes对象的tick_params函数来控制。以下是文档中的例子:

 >>> ax.tick_params()

 Parameters
 ----------
 axis : {'x', 'y', 'both'}, default: 'both'
     The axis to which the parameters are applied.
 which : {'major', 'minor', 'both'}, default: 'major'
     The group of ticks to which the parameters are applied.
 reset : bool, default: False
     Whether to reset the ticks to defaults before updating them.

 Other Parameters
 ----------------
 direction : {'in', 'out', 'inout'}
     Puts ticks inside the axes, outside the axes, or both.
 length : float
     Tick length in points.
 width : float
     Tick width in points.
 color : color
     Tick color.

首先应该指定的两个参数是axis和which。这些参数将应用于X或Y轴刻度,以及最小和最大刻度。

大多数时候,在Matplotlib中不会看到小刻度。如果需要可以使用axes对象上的minortics_on函数:

 fig, ax = plt.subplots(figsize=(3, 2))

 >>> ax.minorticks_on()

7、Tickers

如果不像自定义tick参数(因为很麻烦)。可以使用许多内置的Matplotlib的“主题”集合(称为tickers)。

 from matplotlib import ticker
 dir(ticker)
 ['AutoLocator',
  'AutoMinorLocator',
  'EngFormatter',
  'FixedFormatter',
  'FixedLocator',
  'FormatStrFormatter',
  'Formatter',
  'FuncFormatter',
  'IndexFormatter',
  'IndexLocator',
  'Integral',
  'LinearLocator',
 ]

在ticker模块下有许多这样的子模块。一般情况下标题中带有Locator的控件控制刻度的位置。而Formatters 则表示标签的样式。选择好后可以使用下面的方式进行设置:

 from matplotlib.ticker import EngFormatter

 ax.xaxis.set_major_formatter(EngFormatter())

使用axes对象的xaxis或yaxis属性,调用set_major(minor)_formatter(locator)函数,并传入类名。

8、grid

自定义网格线可以突出数据范围。在Matplotlib中,可以使用轴线对象的网格函数创建和自定义网格。下面是一个垂直网格的例子:

 fig, ax = plt.subplots()

 ax.grid(axis="x", linestyle=":", lw=3, color="r")

9、bar_label

条形图在数据分析中很常见。它们最重要的地方就是每个条的高度,条形标签可以突出每个条的显示。

bar_label函数接受一个BarContainer对象作为参数,并自动标注每个bar的高度。

下面是Seaborn的一个简单的计数图:

 import seaborn as sns

 diamonds = sns.load_dataset("diamonds")

 ax = sns.countplot(diamonds["cut"])

每次使用Seaborn或ax.bar等函数创建barplot时,BarContainer对象都会被添加到图中。可以使用axes对象的containers属性来检索这个容器对象:

 ax.containers
 [<BarContainer object of 5 artists>]

在上面的列表中有一个BarContainer对象有5个bar。我们只需在创建了plot之后将这个对象传递给bar_label:

 ax = sns.countplot(diamonds["cut"])
 ax.bar_label(ax.containers[0], padding=1)
 ax.set_ylim(0, 25000)
 plt.show();

10、zorder

当有很多图的时候,显示顺序是非常重要的。你需要确保在画布上以适当的顺序绘制每个图形,就需要zorder参数。

下面,我们用不同的zorders创建了三行:

 x = np.linspace(0, 7.5, 100)

 plt.plot(x, np.sin(x), label="zorder=2", zorder=2)  # bottom
 plt.plot(x, np.sin(x + 0.5), label="zorder=3", zorder=3)
 plt.axhline(0, label="zorder=2.5", color="lightgrey", zorder=2.5)

 plt.title("Custom order of elements")

 l = plt.legend(loc="upper right")
 l.set_zorder(2.5)  # legend between blue and orange line

 plt.show()

可以看到zorder越大,就会在最上方显示,覆盖掉小的组件。

总结

Matplotlib在2023年6月的下载量超过3000万,几乎是其最大竞争对手Plotly的4倍。Matplotlib的成功不仅仅在于它的简单(只需要几行代码就能生成简单的图形),还在于他的功能强大,但是要使用这些强大的功能就需要使用他的高级功能,但是这些高级功能往往需要比较复杂的配置或者参数,需要我们浏览官方的文档。所以才出现了seaborn,他将Matplotlib进行了整合不仅简单而且好看。

但是有时我们需要更深入的定制功能,seaborn也许还达不到我们的目标,我们只能自己定义的参数,本文总结的是个高级技巧可以轻松的帮你完整自定义Matplotlib的任务。

https://avoid.overfit.cn/post/fece2cde8dbd4f899de00f5509385c6c

作者:Bex T

目录
相关文章
|
7月前
|
Python 容器
(学习笔记)matplotlib.pyplot模块下基本画图函数的整理
1. plt.plot()函数 主要用于画图,绘制点和线。 语法:
121 0
|
人工智能 并行计算 算法
Pandas、Numpy性能优化秘籍(全)
pandas、numpy是Python数据科学中非常常用的库,numpy是Python的数值计算扩展,专门用来处理矩阵,它的运算效率比列表更高效。pandas是基于numpy的数据处理工具,能更方便的操作大型表格类型的数据集。但是,随着数据量的剧增,有时numpy和pandas的速度就成瓶颈。
|
3月前
|
数据可视化 数据处理 Python
Matplotlib:Python绘图利器之王
Matplotlib:Python绘图利器之王
22 0
|
4月前
|
数据可视化 数据格式 Python
Matplotlib绘图从零入门到实践(含各类用法详解)
本文是一份全面的Matplotlib绘图库教程,涵盖了从基础到高级的各类用法,包括安装、基础图形绘制、调节设置、数值处理、图形美化、动画制作等,并提供了理论讨论和实例项目,旨在帮助读者从零开始学习并掌握Python中的Matplotlib绘图。
135 0
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。
【7月更文挑战第5天】了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。数据预处理涉及缺失值(dropna(), fillna())和异常值处理。使用describe()进行统计分析,通过Matplotlib和Seaborn绘图。回归和分类分析用到Scikit-learn,如LinearRegression和RandomForestClassifier。
107 3
|
6月前
|
前端开发 数据可视化 API
Matplotlib的详细使用及原理(一)
`matplotlib`是Python的数据可视化库,用于生成高质量的2D图形,支持静态、动态和交互式图表。它是pandas和seaborn等库的底层基础。基本绘图通过`pyplot.subplots`创建figure和axes,然后用`plot`函数绘制线条。例如,`plt.plot([1, 2, 3, 4], [1, 4, 2, 3])`可绘制简单折线图。matplotlib有三种API层次,包括FigureCanvas、Renderer和Artist,其中Artist对应具体的图形元素。此外,matplotlib的绘图接口分为显式创建和pyplot隐式创建两种方式。
|
6月前
|
Python
我终于懂得如何使用matplotlib进行画图
我终于懂得如何使用matplotlib进行画图
|
6月前
|
Python 容器
Matplotlib的详细使用及原理(三)
这篇文章介绍了如何使用Python的Matplotlib库绘制线条。主要内容包括两种绘制线条的方法:
|
6月前
|
开发者 Python 容器
Matplotlib的详细使用及原理(二)
Matplotlib是一个Python库,用于创建二维和三维图表,它是NumPy的扩展。使用时,首先创建`Figure`实例,然后在其上添加`Axes`或`Subplot`。每个图表元素(如线、散点、直方图)都是一个`Artist`对象,具有属性如`alpha`、`visible`等,可以通过`get_`和`set_`方法进行访问和修改。`Figure`和`Axes`对象都有对应的`patch`属性,分别代表它们的背景矩形。图形中的线条(`Line2D`)是基本要素之一,可配置颜色、线型、宽度等属性。
|
7月前
|
数据可视化 数据挖掘 C++
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
154 2