batch_size对精确度和损失的影响

简介: batch_size对精确度和损失的影响

1 问题

在深度学习的学习过程中,模型性能对batchsize虽然没有学习率那么敏感,但是在进一步提升模型性能时,batch_size就会成为一个非常关键的参数。

batch_size对精度和损失的影响研究。

batch_size = [,32,64,128,256]

  1. 不同batch_size下的训练精度曲线;
  2. 不同batch_size下的训练Loss曲线;
  3. 不同batch_size下的验证精度曲线;
  4. 不同batch_size下的验证Loss曲线;

基础参数配置:

  1. 训练周期=40
  2. 学习率=0.001
  3. 优化器= SGD


2 方法

在此之前,我们已经实现了全网络连接MNIST手写数字模型建立,一些参数对模型的精确度和损失产生影响,例如,学习率(learn_rate)、batch_size等

针对batch_size对模型的影响,将定义一个方法,把batch_size = [32,64,128,256]

数据可视化,使用matplotlib绘制

Batchsize=32

Batchsize=64

Batchsize=128

Batchsize=256

数据可视化,使用matplotlib绘制四个子图,关键代码如下:

结果如下:


3 结语

batch_size取值32训练和取64128训练,trainvallloss下降趋势32>64>128>256,最终结果也是32>64>128>256差不多,train vallacc,的最终结果32=64>128>256,其中64trainacc最先大于vallacc,可能是实验偶然的结果,对于只有十个的分类,可以将batch32附近,这样可以提高精度,降低训练时长

目录
相关文章
|
6月前
|
编解码 并行计算 算法
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
|
5月前
|
测试技术
goldfish loss:减少训练数据泄漏,提高大语言模型输出的多样性
LLMs(大型语言模型)能够记忆并重复它们的训练数据,这可能会带来隐私和版权风险。为了减轻记忆现象,论文作者引入了一种名为"goldfish loss"的微妙修改,在训练过程中,随机抽样的一部分标记被排除在损失计算之外。这些被舍弃的标记不会被模型记忆,从而防止模型完整复制训练集中的一整个标记序列。
83 3
|
6月前
|
算法
如何调整 YOLOv3 的 NMS 参数以优化检测性能?
如何调整 YOLOv3 的 NMS 参数以优化检测性能?
|
2月前
|
自然语言处理 数据可视化 API
优化采样参数提升大语言模型响应质量:深入分析温度、top_p、top_k和min_p的随机解码策略
本文详细解析了大语言模型(LLM)的采样策略及其关键参数,如温度和top_p。LLM基于输入提示生成下一个标记的概率分布,通过采样策略选择标记并附回输入,形成循环。文章介绍了对数概率(logprobs)、贪婪解码、温度参数调整、top-k与top-p采样等概念,并探讨了min-p采样这一新方法。通过调整这些参数,可以优化LLM输出的质量和创造性。最后,文章提供了实验性尝试的建议,帮助读者在特定任务中找到最佳参数配置。本文使用VLLM作为推理引擎,展示了Phi-3.5-mini-instruct模型的应用实例。
67 6
|
机器学习/深度学习 资源调度 监控
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
|
4月前
|
机器学习/深度学习 算法 C++
C++多态崩溃问题之为什么在计算梯度下降时需要除以批次大小(batch size)
C++多态崩溃问题之为什么在计算梯度下降时需要除以批次大小(batch size)
|
4月前
|
Python
Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)
Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)
|
6月前
|
存储 人工智能 自然语言处理
DeepSparse: 通过剪枝和稀疏预训练,在不损失精度的情况下减少70%的模型大小,提升三倍速度
该论文提出了一种新方法,用于创建高稀疏性大型语言模型,通过稀疏预训练和高效部署,在保持高准确度的同时显著提升处理速度。方法包括结合SparseGPT剪枝和稀疏预训练,实现70%稀疏度下准确率完全恢复,尤其适合复杂任务。实验显示,使用Cerebras CS-3 AI加速器和Neural Magic的DeepSparse、nm-vllm引擎,训练和推理速度有显著提升。此外,量化稀疏模型在CPU上速度提升可达8.6倍。这种方法优于传统剪枝,为构建更快、更小的语言模型提供了新途径,并通过开源代码和模型促进了研究复现和扩展。
111 3
YOLOv3的NMS参数调整对模型的准确率和召回率分别有什么影响?
YOLOv3的NMS参数调整对模型的准确率和召回率分别有什么影响?
|
6月前
|
机器学习/深度学习 并行计算 数据可视化
Batch Size 对神经网络训练的影响
Batch Size 对神经网络训练的影响
98 0