【Numpy】选择特定行列

简介: 【Numpy】选择特定行列

问题

方法

import numpy as np
a = np.random.randint(0, 100, (3,3))
print(a)
b = a[:, [0,2]] # 选择所有行, 第1、3列
print(b)

结语

目录
相关文章
|
2月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 3
NumPy 矩阵库教程,介绍 numpy.matlib 模块,该模块提供专门的矩阵操作函数。矩阵是由行列构成的矩形数组,元素可为数字、符号或表达式。教程展示如何使用 `numpy.matlib.zeros()` 创建全零矩阵,并演示了转置矩阵的实现方法,即通过 `T` 属性或 `transpose` 函数将 m×n 矩阵转换为 n×m 矩阵。
38 4
|
2月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 2
不同于ndarray,matlib函数生成的是矩阵形式。教程中详细解释了矩阵的概念,并介绍了转置矩阵的实现方式,使用T属性或函数实现。此外,还展示了如何利用`matlib.empty()`创建指定形状的新矩阵,并可选择数据类型及顺序。最后通过示例演示了矩阵填充随机数据的方法。
35 3
|
2月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 8
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或表达式。教程中讲解了如何使用`numpy.matlib.rand()`创建指定大小且元素随机填充的矩阵,并演示了矩阵与ndarray之间的转换方法。此外,还介绍了如何使用T属性进行矩阵转置。示例代码展示了创建矩阵、将其转换为ndarray以及再转回矩阵的过程。
43 9
|
2月前
|
数据可视化 数据挖掘 数据处理
Pandas转置技巧:轻松翻转你的数据表
Pandas转置技巧:轻松翻转你的数据表
79 0
|
2月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 1
NumPy的`numpy.matlib`模块提供了一系列生成矩阵的函数。矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或表达式。使用`.T`属性或`numpy.transpose`函数可实现矩阵转置,将m行n列的矩阵转换为n行m列。示例代码展示了如何通过`np.arange`和`reshape`创建矩阵,并使用`.T`进行转置。
51 2
|
4月前
|
索引 Python
NumPy 教程 之 NumPy 切片和索引 3
`ndarray`可通过索引或切片访问和修改。索引基于0-n, 类似Python列表。使用`s(slice(start, stop, step))`或`start:stop:step`语法进行切片。单参数如`[2]`获取单个元素; `2:`获取从2开始所有元素; `2:7`获取2到6的元素。
33 6
|
4月前
|
索引 Python
NumPy 教程 之 NumPy 切片和索引 7
NumPy 切片和索引用于访问和修改 `ndarray` 对象。类似于 Python 的列表切片, 使用索引 `[0-n]` 和切片 `slice(start, stop, step)` 或简写为 `[start:stop:step]` 来提取元素。单个索引 `[n]` 获取单个元素, `[n:]` 获取从 `n` 开始的所有元素, `[n:m]` 获取 `n` 至 `m-1` 的元素。省略号 `...` 保持选择维度与数组一致, 如 `a[...,1]` 获取所有第二列, `a[1,...]` 获取第二行, `a[...,1:]` 获取所有第二列及之后的元素。
27 4
|
4月前
|
索引 Python
NumPy 教程 之 NumPy 切片和索引 5
`ndarray`可通过索引或切片访问和修改。使用 `slice` 函数或冒号语法 `[start:stop:step]` 从原数组切割新数组。单参数 `[n]` 获取单个元素, `[n:]` 获取从 n 开始的所有元素, `[n:m]` 获取 n 到 m-1 的元素。 **示例:** ```python import numpy as np a = np.arange(10) # 创建数组 [0 1 2 3 4 5 6 7 8 9] print(a[2:5]) # 输出 [2 3 4] ```
31 3
|
4月前
|
索引 Python
NumPy 教程 之 NumPy 切片和索引 4
NumPy 切片和索引允许访问和修改 `ndarray` 对象的内容。类似于 Python 的列表切片, 可以使用 `start:stop:step` 形式的索引, 其中省略号代表默认值。
23 3
|
4月前
|
索引 Python
NumPy 教程 之 NumPy 切片和索引 2
`ndarray` 支持类似 Python `list` 的切片操作。可通过 `slice` 函数设置 `start`, `stop`, `step` 参数或用冒号语法 `start:stop:step` 从原数组中获取新数组。示例: `a = np.arange(10); b = a[2:7:2]` 输出 `[2 4 6]`.
25 2