NumPy 教程 之 NumPy 切片和索引 1

简介: ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

NumPy 教程 之 NumPy 切片和索引 1

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

实例

import numpy as np

a = np.arange(10)
s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])

输出结果为:

[2 4 6]

以上实例中,我们首先通过 arange() 函数创建 ndarray 对象。 然后,分别设置起始,终止和步长的参数为 2,7 和 2。

目录
相关文章
|
3天前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 4
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或数学表达式。
14 4
|
4天前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 2
不同于ndarray,matlib函数生成的是矩阵形式。教程中详细解释了矩阵的概念,并介绍了转置矩阵的实现方式,使用T属性或函数实现。此外,还展示了如何利用`matlib.empty()`创建指定形状的新矩阵,并可选择数据类型及顺序。最后通过示例演示了矩阵填充随机数据的方法。
17 3
|
7天前
|
存储 Python
NumPy 教程 之 NumPy 字节交换 1
本教程介绍了NumPy中的字节交换功能。字节顺序规定了多字节对象在内存中的存储规则,分为大端模式和小端模式。大端模式下,高字节存于低地址;而在小端模式下则相反。`numpy.ndarray.byteswap()`函数用于对ndarray中的每个元素进行字节序转换。示例展示了如何使用该函数实现字节交换,并提供了具体输出结果。
32 11
|
1天前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 8
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或表达式。教程中讲解了如何使用`numpy.matlib.rand()`创建指定大小且元素随机填充的矩阵,并演示了矩阵与ndarray之间的转换方法。此外,还介绍了如何使用T属性进行矩阵转置。示例代码展示了创建矩阵、将其转换为ndarray以及再转回矩阵的过程。
17 9
|
7天前
|
Python
NumPy 教程 之 NumPy 副本和视图 1
NumPy 副本和视图教程介绍:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是原始数据的引用,修改视图会影响原始数据。视图通常通过切片操作或 `ndarray.view()` 方法获得,副本则通过 `ndarray.copy()` 或 `deepCopy()` 函数生成。简单赋值不创建副本,而是共享原始数据。
26 9
|
6天前
|
Python
NumPy 教程 之 NumPy 副本和视图 3
副本是对原始数据的完全拷贝,修改副本不影响原始数据;而视图则是原始数据的别名,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生,副本则在使用`copy()`函数或Python序列切片操作及`deepCopy()`函数时生成。示例展示了如何使用`view()`创建数组视图,并说明了其对原始数组形状的影响。
21 6
|
8天前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 8
NumPy提供了多种排序方法,包括快速排序、归并排序及堆排序,各有不同的速度、最坏情况性能、工作空间和稳定性特点。此外,NumPy还提供了`numpy.extract()`函数,可以根据特定条件从数组中抽取元素。例如,在一个3x3数组中,通过定义条件选择偶数元素,并使用该函数提取这些元素。示例输出为:[0., 2., 4., 6., 8.]。
18 8
|
5天前
|
Python
NumPy 教程 之 NumPy 副本和视图 5
NumPy副本和视图教程介绍副本与视图的区别:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是对原始数据的引用,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生;副本则在序列切片操作、调用`deepCopy()`或使用`copy()`函数时生成。示例展示了使用`copy()`函数创建副本,并验证了修改副本不会改变原始数据。
20 4
|
9天前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 5
NumPy中的排序方法及特性对比,包括快速排序、归并排序与堆排序的速度、最坏情况性能、工作空间及稳定性分析。并通过`numpy.argmax()`与`numpy.argmin()`函数演示了如何获取数组中最大值和最小值的索引,涵盖不同轴方向的操作,并提供了具体实例与输出结果,便于理解与实践。
15 4
|
2天前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 6
主要内容包括矩阵的概念、转置操作及单位矩阵生成。使用numpy.matlib提供的工具,如`numpy.matlib.identity()`可创建指定大小的单位矩阵,示例中创建了一个5x5的浮点型单位矩阵,并展示了其输出结果。
5 0