最大似然译码与维特比卷积译码算法

简介: 最大似然译码与维特比卷积译码算法

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。

卷积译码

最大似然译码

如果所有的输入信息序列等概, 则通过比较各个条件概率, 也称为似然函数 $\mathbf{P}\left(\mathbf{Z} \mid \mathbf{U}^{(\mathbf{m})}\right)$ , 就可以得到具有最小差错概率的译码器, 这里 $\mathbf{Z}$ 是接收序列 , $\mathbf{U}^{(\mathrm{m})}$ 是可能发送的序列。如果满足如下公式, 译码器就选择 $\mathbf{U}^{\left(\mathrm{m}^{\prime}\right)}$

$$ \mathbf{P}\left(\mathbf{Z} \mid \mathbf{U}^{\left(\mathbf{m}^{\prime}\right)}\right)=\max \mathbf{P}\left(\mathbf{Z} \mid \mathbf{U}^{(\mathbf{m})}\right) \text { over all } \mathbf{U}^{(\mathbf{m})} $$

对于 BSC信道, 上式相当于选择和序列Z具有最小汉明距离的码字 $\mathbf{U}^{\left(\mathrm{m}^{\prime}\right)}$ 。译码器总是从所有可能的发送序列 $\mathbf{U}^{(\mathrm{m})}$ 中选择和Z距离最小的序列 $\mathbf{U}^{\left(\mathrm{m}^{\prime}\right)}$ 。

对于高斯信道, 距离为欧式距离。

假设接收端收到的码序列为1011010010010010, 如何译码?

计算下图中所有可能路径的概率, 然后比较, 选出最大值。

有多少条路径 ? $\leq 2^{8}$ (穷举法, 需要比较 $2^{l}$ , 其中 l 为码序列长度)

卷积译码-维特比卷积译码算法

维特比译码算法是维特比在1967年提出。维特比算法的实质是最大似然译码,但它利用了编码网格图的特殊结构,从而降低了计算的复杂度,与完全比较译码相比,它的优点是使得译码器的复杂性不再是码字序列中所含码元数的函数。

该算法包括计算网格图上在时刻t到达各个状态的路径和接收序列之间的相似度,或者说距离。维特比算法考虑的是,去除不可能成为最大似然选择对象的网格图上的路径,即如果有两条路径到达同一个状态,则具有最佳量度的路径被选中,称为幸存路径

对所有状态都将进行这样的选路操作,译码器不断的在网格图上深入,通过去除可能性最小的路径实现判决。较早地抛弃不可能的路径降低了译码的复杂性。注意,选择最优路径可以表述为选择具有最大似然度量的码字,或者选择具有最小距离的码字

假设为BSC信道,汉明距离为合适的距离度量。

维特比译码算法的精髓可以总结为:加、比、选。

  • 加:距离(概率,分支度量值)相加;
  • 比:累加距离(概率,累计度量值)的比较;
  • 选:选出距离小(概率大)的路径作为幸存路径

维特比译码算法是基于网格图进行的。译码时先将接收序列按照n分组,然后计算每分组与相应网格图中各分支的输出之间的汉明距离。

下图所示的(2,1,3)卷积码,若接收序列为:11 01 10 11 00 10 11,求译码结果。

译码的路径,译码结果是:10011

输入为:10011时,编码结果是 11 01 11 11 10 10 11

对比接收序列 11 01 10 11 00 10 11

错了2位,译码过程中都纠正了过来。

卷积码的距离特性:自由距:从0状态回到0状态的距离

$d_{\text {free }}=5 \quad t=\left[\left(d_{f}-1\right) / 2\right]$

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
190 55
|
3月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
119 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
25天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
130 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
6月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
221 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
3月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
149 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
91 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
124 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。

热门文章

最新文章