Forest plot(森林图) | Cox生存分析可视化

简介: Forest plot(森林图) | Cox生存分析可视化

本文首发于“生信补给站”公众号 https://mp.weixin.qq.com/s/2W1W-8JKTM4S4nml3VF51w


  Meta分析的结果使用森林图进行可视化展示很常见,其实COX生存分析也能用森林图展示。

   之前分享过绘制KM曲线R|生存分析(1),诺莫图展示COX结果Nomogram(诺莫图) | Logistic、Cox生存分析结果可视化,本文将简单的介绍如何使用R-survminer包绘制Cox生存分析结果的森林图

准备数据

同样使用上次绘制诺莫图使用的TCGA-LIHC队列的临床数据,

#载入R函数包
library(survival)
library(survminer)
## 读取LIHC数据
LIHC <- read.csv("TCGA-LIHC-nomogram.csv",header=TRUE)
head(LIHC)

构建COX生存模型

对LIHC队列进行Cox回归分析,时间变量是time,结局变量是status,自变量选择 age,gender和 grade,结果如下:

#构建模型
model <- coxph( Surv(time, status) ~  age + gender + grade , data =  LIHC )
model

好吧,虽然不显著,但是不影响后续森林图的绘制。

绘制森林图


1 ggforest绘制基础森林图

#基础森林图

ggforest(model, data=LIHC)

只需cox回归模型以及数据集即可完成森林图的绘制,但是可以从以下几个方面去优化COX结果森林图:

A:森林图的标题

B:调整前三列的距离,防止过宽或过窄(重叠)

C:字体大小以及HR的小数位数

D:变量名称的调整(分类变量使用数值表示)


2 森林图优化,调整

1)调整变量名称
LIHC <- within(LIHC, {
gender <- factor(gender, labels = c('female', 'male'))
grade <- factor(grade , labels = c('Grade1', 'Grade3', 'Grade3' , 'Grade4'))
})

也许觉得多此一举?

更重要的用途是当分类变量使用1,2... n的数值表示的时候,在图中不会给出分类比较的变量名称,因此需要数值标志的分类变量进行/ 因子转换,然后再绘制。

可自行将gender的FEMALE和MALE改成1 ,2 ,比较结果的区别


2)优化森林图

model <- coxph( Surv(time, status) ~  age + gender + grade , data =  LIHC )
ggforest(model,  #coxph得到的Cox回归结果
        data = LIHC,  #数据集
        main = 'Hazard ratio of LIHC',  #标题
        cpositions = c(0.05, 0.15, 0.35),  #前三列距离
        fontsize = 1, #字体大小
        refLabel = 'reference', #相对变量的数值标签,也可改为1
        noDigits = 3 #保留HR值以及95%CI的小数位数
      )

如此即完成了以上几个可优化,调整的地方。

此外森林图左下角会给出出现结局事件的个数,COX生存模型的P值,AIC值和C-index值。

◆  

COX生存模型可以绘制森林图,那logist回归的结果可以绘制吗?答案当然是肯定的,后面见!🤭

相关文章
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
7月前
|
数据可视化 算法 数据挖掘
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福指数可视化|数据分享(下)
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福指数可视化|数据分享
|
7月前
|
数据挖掘
R语言临床预测模型:分层构建COX生存回归模型STRATIFIED COX MODEL、KM生存曲线、PH假设检验
R语言临床预测模型:分层构建COX生存回归模型STRATIFIED COX MODEL、KM生存曲线、PH假设检验
|
7月前
|
数据可视化 算法 数据挖掘
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福指数可视化|数据分享(上)
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福指数可视化|数据分享
|
7月前
|
算法 数据挖掘 Go
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
|
7月前
|
数据可视化 算法
R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图
R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图
|
7月前
|
数据可视化 数据挖掘
R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
|
7月前
|
机器学习/深度学习 算法 Serverless
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
|
7月前
|
机器学习/深度学习 数据可视化 算法
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
|
7月前
|
数据可视化 算法 数据挖掘
R语言用温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图可视化
R语言用温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图可视化

热门文章

最新文章