【PAT甲级 - C++题解】1004 Counting Leaves

简介: 【PAT甲级 - C++题解】1004 Counting Leaves

1004 Counting Leaves


A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.


Input Specification:


Each input file contains one test case. Each case starts with a line containing 0<N<100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 01.


The input ends with N being 0. That case must NOT be processed.

Output Specification:


For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.


The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

Sample Input:

2 1
01 1 02
• 1
• 2

Sample Output:

0 1

题意


第一行给定一个 N NN 和 M MM ,分别表示该树的结点总数量以及非叶子结点数量。


接下来的 M MM 行,输入每个非叶子结点的孩子结点,格式为:


ID K ID[1] ID[2] ... ID[K]ID 表示非叶子结点的编号,K KK 表示该结点有 K KK 个孩子结点,然后紧跟 K KK 个孩子结点的编号。


让我们统计该树中每一层的叶子结点个数,并输出。


如下图所示,cnt 表示每一层的叶子结点数:


221be5f6f4654eaca2a4a30e86292d75.png

思路


  1. 用链式前向星的方法存储该树。
  2. 递归更新每层叶子结点的数量,因为题目给定根结点是 1 ,所以从 1 开始向下递归,去递归它的孩子结点。如果在递归过程中 h[u] == -1 即结点 u 没有孩子结点,则将该层的叶子节点数加 1
  3. 最后输出每层的叶子结点数量。


代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int h[N], ne[N], e[N], idx;    //邻接表
int cnt[N];     //计算每一层的叶子结点数
int max_depth;  //树的最大深度
//链式前向星,往a向b加一条边
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
//递归更新每层的叶子结点数量
void dfs(int u, int depth)
{
    //如果当前结点已经是叶子结点,则进行更新操作
    if (h[u] == -1)
    {
        max_depth = max(max_depth, depth);
        cnt[depth]++;
        return;
    }
    //递归遍历其孩子结点
    for (int i = h[u]; ~i; i = ne[i])
        dfs(e[i], depth + 1);
}
int main()
{
    int n, m;
    cin >> n >> m;
    //输入结点之间的关系
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, k;
        cin >> a >> k;
        while (k--)
        {
            cin >> b;
            add(a, b);
        }
    }
    dfs(1, 0);  //根结点为1
    //输出每层的叶子结点数
    cout << cnt[0];
    for (int i = 1; i <= max_depth; i++)
        cout << " " << cnt[i];
    cout << endl;
    return 0;
}


目录
相关文章
|
C++
【PAT甲级 - C++题解】1040 Longest Symmetric String
【PAT甲级 - C++题解】1040 Longest Symmetric String
70 0
|
算法 C++
【PAT甲级 - C++题解】1044 Shopping in Mars
【PAT甲级 - C++题解】1044 Shopping in Mars
93 0
|
C++
【PAT甲级 - C++题解】1117 Eddington Number
【PAT甲级 - C++题解】1117 Eddington Number
84 0
|
存储 C++ 容器
【PAT甲级 - C++题解】1057 Stack
【PAT甲级 - C++题解】1057 Stack
79 0
|
存储 C++
【PAT甲级 - C++题解】1055 The World‘s Richest
【PAT甲级 - C++题解】1055 The World‘s Richest
82 0
|
C++
【PAT甲级 - C++题解】1051 Pop Sequence
【PAT甲级 - C++题解】1051 Pop Sequence
86 0
|
人工智能 BI C++
【PAT甲级 - C++题解】1148 Werewolf - Simple Version
【PAT甲级 - C++题解】1148 Werewolf - Simple Version
141 0
|
存储 定位技术 C++
【PAT甲级 - C++题解】1091 Acute Stroke
【PAT甲级 - C++题解】1091 Acute Stroke
62 0
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
63 2
|
2月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
113 5