1117 Eddington Number
British astronomer Eddington liked to ride a bike. It is said that in order to show off his skill, he has even defined an “Eddington number”, E – that is, the maximum integer E such that it is for E days that one rides more than E miles. Eddington’s own E was 87.
Now given everyday’s distances that one rides for N days, you are supposed to find the corresponding E (≤N).
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤105), the days of continuous riding. Then N non-negative integers are given in the next line, being the riding distances of everyday.
Output Specification:
For each case, print in a line the Eddington number for these N days.
Sample Input:
10 6 7 6 9 3 10 8 2 7 8
Sample Output:
6
题意
给定 N 个数,需要我们找出一个最大的爱丁顿数 i ,其定义为当有 i 个数都大于 i 时,则 i 就是爱丁顿数。
思路
这道题可以先把这 N 个数放到数组 a 中并进行排序,然后对爱丁顿数进行枚举,因为最多只有 N 个数,所以爱丁顿数最大不会超过 N 。
每次枚举只需判断 a[N-i] 是否大于当前爱丁顿数 i ,如果大于,则说明第 N-i 个数及其以后的所有的共 i 个数都大于 i ,因为数组已经是有序的,前面的数大于 i 则后面的数也一定大于 i ,那么直接输出 i 即可。
代码
#include<bits/stdc++.h> using namespace std; const int N = 100010; int a[N]; int n; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); sort(a, a + n); for (int i = n; i; i--) if (a[n - i] > i) { printf("%d\n", i); return 0; } puts("0"); return 0; }