递归的理解与简单应用(Java版)

简介: 递归的理解与简单应用(Java版)

1.递归的理解及思路


1.1递归应用场景


迷宫问题,八皇后问题都运用到了递归


980175e624365099419c2cadd54dca8e_819edcfd7bcd198ac0a141363ecb9184.png


1.2递归的概念


简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。


1.3递归能解决什么样的问题


1) 各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题


2) 各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等.


3) 将用栈解决的问题-->第归代码比较简洁


1.4递归需要遵守的重要规则


1) 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)


2) 方法的局部变量是独立的,不会相互影响, 比如 n 变量


3) 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.


4) 递归必须向退出递归的条件逼近,否则就是无限递归,出现 StackOverflowError)


5) 当一个方法执行完毕,或者遇到 return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕


递归-迷宫问题


1) 小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关


2) 测试回溯现象


具体代码实现(含注释):


package com.atguigu.recursion;
public class Queue8 {
    //先定义一个max表示共有多少个皇后
    int max = 8;
    //定义数组array,保存皇后放置位置的结果,比如arr[8] = {0,4,7,5,2,6,1,3}
    int[] array = new int[max];
    static int count = 0;
    public static void main(String[] args) {
        //测试,8皇后是否正确
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.println(count);
    }
    //编写一个方法,放置第n个皇后
    //特别注意:check是每一次递归时,进入到check中都有for循环
    private void check(int n) {
        if(n == max) {    //n==8,说明8个皇后已经放好
            print();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for(int i =0;i < max;i++) {
            //先把当前这个皇后n,放带该行的第一列
            array[n] = i;
            //判断放置第n个皇后到i列是,是否冲突
            if(judge(n)) {//不冲突
                //借着放n+1个皇后,开始递归
                check(n+1);//
            }
            //如果冲突,就继续指向array[n] = i;即将第n个皇后,放置在本行的后裔一个位置
        }
    }
    //查看当我们放置第n个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
    private boolean judge(int n) {
        for(int i = 0;i < n;i++) {
            //说明
            //1.array[i] == array[n]  判断第n个皇后和前面n-1个皇后在同一列
            //Math.abs(n-i) == Math.abs(array[n]-array[i])  判断第n个皇后是否和第i个皇后s是否在同一斜线
            if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n]-array[i])) {
                return false;
            }
        }
        return true;
    }
    //写一个方法,可以将皇后摆放的位置输出
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i]+ " ");
        }
        System.out.println();
    }
}


递归-八皇后问题(回溯算法)


八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不处于同一行、同一列或同一斜线上,问有多少种摆法(92)。


八皇后问题算法思路分析


1) 第一个皇后先放第一行第一列


2) 第二个皇后放在第二行第一列、然后判断是否 OK, 如果不 OK,继续放在第二列、第三列、依次把所有列都


放完,找到一个合适


3) 继续第三个皇后,还是第一列、第二列……直到第 8 个皇后也能放在一个不冲突的位置,算是找到了一个正确



4) 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,


全部得到.


5) 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4 的步骤


具体代码实现:


package com.atguigu.recursion;
public class MiGong {
    public static void main(String[] args) {
        //先创建一个二维数组,模拟迷宫
        //地图
        int[][] map = new int[8][7];
        //使用1表示墙
        //上下全部置为1
        for(int i = 0;i < 7;i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        //左右全部置为1
        for(int i = 0;i < 8;i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }
        //设置挡板
        map[3][1] = 1;
        map[3][2] = 1;
//        map[1][2] = 1;
//        map[2][2] = 1;
        //输出地图
        System.out.println("地图的情况");
        for(int i = 0;i < map.length;i++) {
            for(int j = 0;j < map[i].length;j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
        //使用递归回溯给小球找路
        //setWay(map,1,1);
        //修改策略
        setWay(map,1,1);
        //输出新的地图,小球走过,并标识过的递归
        System.out.println("小球走过,并标识过 地图的情况");
        for(int i = 0;i < map.length;i++) {
            for(int j = 0;j < map[i].length;j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
    }
        //使用递归回溯来给小球找路
        //说明
        //1.map表示地图
        //2.i,j表示从地图的哪个位置开始出发(1,1)
        //3.如果小球能到map[6][5]位置,则说明通路能找到
        //4.约定:当map[i][j]为0表示该点没有走过;2表示通路可以走;3表示该店已经走过,但是走不通
        //5.在走迷宫是,需要确定一个策略(方法)  下->右->上->左,如果该店走不通,再回溯
        /*
            map表示地图
            i 从那个位置开始找
            j
            return 如果找到通路就返回true 否则返回false
         */
        public static boolean setWay(int[][] map,int i,int j) {
            if(map[6][5] == 2) {//通路已经找到
                return true;
            }else {
                if(map[i][j] == 0) {//如果当前这个点还没有走过
                    //按照策略  下->右->上->左
                    map[i][j] = 2;//假定该点是可以走通
                    if(setWay(map,i+1,j)) {//向下
                        return true;
                    }else if(setWay(map,i,j+1)) {//向右
                        return true;
                    }else if(setWay(map,i-1,j)) {//向上
                        return true;
                    }else if(setWay(map,i,j-1)) {//向左
                        return true;
                    }else {
                        //说明该点走不通,是死路
                        map[i][j] = 3;
                        return false;
                    }
                }else {//可能是1,2,3
                    return false;
                }
            }
        }
    //修改策略,改成上右下左
        public static boolean setWay1(int[][] map,int i,int j) {
            if(map[6][5] == 2) {//通路已经找到
                return true;
            }else {
                if(map[i][j] == 0) {//如果当前这个点还没有走过
                    //按照策略  下->右->上->左
                    map[i][j] = 2;//假定该点是可以走通
                    if(setWay1(map,i-1,j)) {//向下
                        return true;
                    }else if(setWay1(map,i,j+1)) {//向右
                        return true;
                    }else if(setWay1(map,i+1,j)) {//向上
                        return true;
                    }else if(setWay1(map,i,j-1)) {//向左
                        return true;
                    }else {
                        //说明该点走不通,是死路
                        map[i][j] = 3;
                        return false;
                    }
                }else {//可能是1,2,3
                    return false;
                }
            }
        }
}


在理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] ={0 , 4, 7, 5, 2, 6, 1, 3} //对应 arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第 i+1 个皇后,放在第 i+1行的第 val+1 列

目录
相关文章
|
6天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
15天前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
基于开源框架Spring AI Alibaba快速构建Java应用
|
8天前
|
SQL Java 数据库连接
从理论到实践:Hibernate与JPA在Java项目中的实际应用
本文介绍了Java持久层框架Hibernate和JPA的基本概念及其在具体项目中的应用。通过一个在线书店系统的实例,展示了如何使用@Entity注解定义实体类、通过Spring Data JPA定义仓库接口、在服务层调用方法进行数据库操作,以及使用JPQL编写自定义查询和管理事务。这些技术不仅简化了数据库操作,还显著提升了开发效率。
20 3
|
18天前
|
SQL 监控 Java
技术前沿:Java连接池技术的最新发展与应用
本文探讨了Java连接池技术的最新发展与应用,包括高性能与低延迟、智能化管理和监控、扩展性与兼容性等方面。同时,结合最佳实践,介绍了如何选择合适的连接池库、合理配置参数、使用监控工具及优化数据库操作,为开发者提供了一份详尽的技术指南。
28 7
|
16天前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
30 3
|
16天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
33 2
|
17天前
|
缓存 Java 数据库连接
Hibernate:Java持久层框架的高效应用
通过上述步骤,可以在Java项目中高效应用Hibernate框架,实现对关系数据库的透明持久化管理。Hibernate提供的强大功能和灵活配置,使得开发者能够专注于业务逻辑的实现,而不必过多关注底层数据库操作。
12 1
|
21天前
|
移动开发 前端开发 JavaScript
java家政系统成品源码的关键特点和技术应用
家政系统成品源码是已开发完成的家政服务管理软件,支持用户注册、登录、管理个人资料,家政人员信息管理,服务项目分类,订单与预约管理,支付集成,评价与反馈,地图定位等功能。适用于各种规模的家政服务公司,采用uniapp、SpringBoot、MySQL等技术栈,确保高效管理和优质用户体验。
|
21天前
|
SQL 监控 Java
Java性能优化:提升应用效率与响应速度的全面指南
【10月更文挑战第21】Java性能优化:提升应用效率与响应速度的全面指南
|
18天前
|
Java 开发者
Java中的多线程基础与应用
【10月更文挑战第24天】在Java的世界中,多线程是提高效率和实现并发处理的关键。本文将深入浅出地介绍如何在Java中创建和管理多线程,以及如何通过同步机制确保数据的安全性。我们将一起探索线程生命周期的奥秘,并通过实例学习如何优化多线程的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
16 0