Linux进程概念(三)(下)

简介: Linux进程概念(三)

当然获取环境变量还有一种方法,C语言提供了一个第三方的变量:

这个是全局环境变量的指针,也就是指向env[]那个表,这样main函数不用传参也可以获取环境变量。

使用之前必须声明一下自己要用environ变量。

进程地址空间

之前有过一张在C/C++语言层面上的地址空间图:

磁盘上面写的程序都是需要先加载到内存里才能运行的,那么这张图是物理方面的内存嘛?并不是,来看这段代码:

每个进程都是有独立性的,按理来说应该是都有单独的空间,可是在两个进程运行中,全局变量a的地址竟然是一样的,这难道说明a是被两个进程公用的吗?但是a在子进程当中又被改掉了,可是父进程当中的却没有改变,地址也完全相同。

这是因为当前显示a的地址是虚拟地址。

我们之前在用VS编译器调试的时候看到的地址都是虚拟地址,物理地址普通用户看不到,这些都由操作系统来管理。

什么是进程地址空间

下面我用32位机器举例子。

那么既然地址空间是虚拟空间,到底有什么用处,到底是怎么实现的呢?

虚拟空间是操作系统防止用户把物理内存给玩坏所弄出来的空间,是通过页表来进行映射和管理的:

在32位的机器中,操作系统会给每个进程“画个大饼”,说你们每个进程都可以分配到2^32字节(约等于4GB)的空间大小,并且每个地址都是独立不冲突的。

普通进程当然不可能一下子全都使用掉,所以理论上来说每个进程都可以有4GB的空间,但是如果某个进程需要的不是特别多或者是需要的特别多,这个时候操作系统就会调整大小了。

首先来看看进程地址空间是什么原理:

在linux源码当中,地址空间是一个mm_struct的数据结构,大概是这样的

struct mm_struct
{
  uint32_t code_start,code_end;
  uint32_t data_start,data_end;
  uint32_t heap_start,heap_end;
  uint32_t stack_start,stack_end;
};

不同区域分别赋值不同的地址就好了,如果有需要再去调整就好了,毕竟这是虚拟地址,怎么搞都搞不坏。

也就是说虚拟空间的本质就是控制这些数据而已。

进程地址空间,页表,内存的关系

一个程序在磁盘里,先放入内存中,然后代码跑起来,代码也是需要储存在内存上的,并且内存当中是类似于数组形式的,一个page位4kb大小。

进程在运行的时候有自己的虚拟地址空间,然后通过页表来映射到物理内存上的。

这些都是由操作系统完成的。

这也就能解释刚开始代码为什么是显示的是同一个地址,子进程改变了数值父进程却没有改变。

因为每个进程都有独立的进程地址空间和页表:

页表不单单只是映射,并且还会去判断,拦截(所有进程都不例外)像刚开始写的那段代码,因为子进程是父进程创建的,那么子进程的地址空间内容是从父进程拷贝而来的,但是页表会发现原本映射出来的位置已经被占有了,这个时候就会在另一处先开辟空间,然后拷贝父进程在内存中的内容到新开辟的空间当中,然后更改页表的映射,这个叫做写时拷贝,这样父进程和子进程就是两个完全独立的空间。

为什么存在进程地址空间

1.防止进程在物理内存当中进行越界的非法操作。(上面的例子已证明)

2.更方便进程和进程的数据代码解耦,保证了进程独立性的特征。(上面的例子已证明)

3.

遵守进程地址空间的不仅仅是操作系统还有编译器!

假设我写了一个程序my.exe。

程序在磁盘的时候是有地址的,逻辑地址(在linux当中也可以称为虚拟地址)

在进程指向进程地址空间的时候,CPU去读取指令,main函数,因为每一条指令都是有虚拟地址的,所以就能找到fun函数,还有a的位置。

CPU的寄存器中储存的就是虚拟地址,通过main函数的虚拟地址然后找到内存中的main然后解析代码,然后调用fun的时候又通过页表映射到了进程地址空间当中,CPU又拿到了fun函数的虚拟地址,然后再映射到物理内存当中,这就是我们调试代码中看到的内存地址编号就是虚拟地址空间。

上面的运行模式也说明了CPU从头到尾都没有见到过物理内存地址,就算是内存中代码的内部使用的也全都是虚拟地址。

至于逻辑地址和虚拟地址的区别,现在用的逻辑地址也是划分区域,代码区,数据区等等,恰好与虚拟地址的编号差不多,所以加载到内存当中使用的就是虚拟地址了。

旧版的逻辑地址就比较繁琐了,是靠偏移量来找到物理内存中数据的地址。

这说明进程地址空间方便了进程以统一视角来看到对应的代码,数据等各个区域,也方便编译器用同一个规则进行编译。(规则是一样的,编译完即可使用)

最后说明:

命令行参数环境变量就是那个environ。

相关文章
|
1月前
|
资源调度 Linux 调度
Linux c/c++之进程基础
这篇文章主要介绍了Linux下C/C++进程的基本概念、组成、模式、运行和状态,以及如何使用系统调用创建和管理进程。
38 0
|
3月前
|
网络协议 Linux
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
675 2
|
21天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
87 4
linux进程管理万字详解!!!
|
12天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
53 8
|
9天前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
20天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
58 4
|
21天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
23天前
|
消息中间件 存储 Linux
|
29天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
39 1
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
26 1
下一篇
无影云桌面