Linux进程概念(三)(下)

简介: Linux进程概念(三)

当然获取环境变量还有一种方法,C语言提供了一个第三方的变量:

这个是全局环境变量的指针,也就是指向env[]那个表,这样main函数不用传参也可以获取环境变量。

使用之前必须声明一下自己要用environ变量。

进程地址空间

之前有过一张在C/C++语言层面上的地址空间图:

磁盘上面写的程序都是需要先加载到内存里才能运行的,那么这张图是物理方面的内存嘛?并不是,来看这段代码:

每个进程都是有独立性的,按理来说应该是都有单独的空间,可是在两个进程运行中,全局变量a的地址竟然是一样的,这难道说明a是被两个进程公用的吗?但是a在子进程当中又被改掉了,可是父进程当中的却没有改变,地址也完全相同。

这是因为当前显示a的地址是虚拟地址。

我们之前在用VS编译器调试的时候看到的地址都是虚拟地址,物理地址普通用户看不到,这些都由操作系统来管理。

什么是进程地址空间

下面我用32位机器举例子。

那么既然地址空间是虚拟空间,到底有什么用处,到底是怎么实现的呢?

虚拟空间是操作系统防止用户把物理内存给玩坏所弄出来的空间,是通过页表来进行映射和管理的:

在32位的机器中,操作系统会给每个进程“画个大饼”,说你们每个进程都可以分配到2^32字节(约等于4GB)的空间大小,并且每个地址都是独立不冲突的。

普通进程当然不可能一下子全都使用掉,所以理论上来说每个进程都可以有4GB的空间,但是如果某个进程需要的不是特别多或者是需要的特别多,这个时候操作系统就会调整大小了。

首先来看看进程地址空间是什么原理:

在linux源码当中,地址空间是一个mm_struct的数据结构,大概是这样的

struct mm_struct
{
  uint32_t code_start,code_end;
  uint32_t data_start,data_end;
  uint32_t heap_start,heap_end;
  uint32_t stack_start,stack_end;
};

不同区域分别赋值不同的地址就好了,如果有需要再去调整就好了,毕竟这是虚拟地址,怎么搞都搞不坏。

也就是说虚拟空间的本质就是控制这些数据而已。

进程地址空间,页表,内存的关系

一个程序在磁盘里,先放入内存中,然后代码跑起来,代码也是需要储存在内存上的,并且内存当中是类似于数组形式的,一个page位4kb大小。

进程在运行的时候有自己的虚拟地址空间,然后通过页表来映射到物理内存上的。

这些都是由操作系统完成的。

这也就能解释刚开始代码为什么是显示的是同一个地址,子进程改变了数值父进程却没有改变。

因为每个进程都有独立的进程地址空间和页表:

页表不单单只是映射,并且还会去判断,拦截(所有进程都不例外)像刚开始写的那段代码,因为子进程是父进程创建的,那么子进程的地址空间内容是从父进程拷贝而来的,但是页表会发现原本映射出来的位置已经被占有了,这个时候就会在另一处先开辟空间,然后拷贝父进程在内存中的内容到新开辟的空间当中,然后更改页表的映射,这个叫做写时拷贝,这样父进程和子进程就是两个完全独立的空间。

为什么存在进程地址空间

1.防止进程在物理内存当中进行越界的非法操作。(上面的例子已证明)

2.更方便进程和进程的数据代码解耦,保证了进程独立性的特征。(上面的例子已证明)

3.

遵守进程地址空间的不仅仅是操作系统还有编译器!

假设我写了一个程序my.exe。

程序在磁盘的时候是有地址的,逻辑地址(在linux当中也可以称为虚拟地址)

在进程指向进程地址空间的时候,CPU去读取指令,main函数,因为每一条指令都是有虚拟地址的,所以就能找到fun函数,还有a的位置。

CPU的寄存器中储存的就是虚拟地址,通过main函数的虚拟地址然后找到内存中的main然后解析代码,然后调用fun的时候又通过页表映射到了进程地址空间当中,CPU又拿到了fun函数的虚拟地址,然后再映射到物理内存当中,这就是我们调试代码中看到的内存地址编号就是虚拟地址空间。

上面的运行模式也说明了CPU从头到尾都没有见到过物理内存地址,就算是内存中代码的内部使用的也全都是虚拟地址。

至于逻辑地址和虚拟地址的区别,现在用的逻辑地址也是划分区域,代码区,数据区等等,恰好与虚拟地址的编号差不多,所以加载到内存当中使用的就是虚拟地址了。

旧版的逻辑地址就比较繁琐了,是靠偏移量来找到物理内存中数据的地址。

这说明进程地址空间方便了进程以统一视角来看到对应的代码,数据等各个区域,也方便编译器用同一个规则进行编译。(规则是一样的,编译完即可使用)

最后说明:

命令行参数环境变量就是那个environ。

相关文章
|
7月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
279 67
|
6月前
|
NoSQL Linux 编译器
GDB符号表概念和在Linux下获取符号表的方法
通过掌握这些关于GDB符号表的知识,你可以更好地管理和理解你的程序,希望这些知识可以帮助你更有效地进行调试工作。
284 16
|
6月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
188 16
|
6月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
135 20
|
5月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
119 0
|
5月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
169 0
|
5月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
118 0
|
5月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
139 0
|
8月前
|
存储 Linux 调度
【Linux】进程概念和进程状态
本文详细介绍了Linux系统中进程的核心概念与管理机制。从进程的定义出发,阐述了其作为操作系统资源管理的基本单位的重要性,并深入解析了task_struct结构体的内容及其在进程管理中的作用。同时,文章讲解了进程的基本操作(如获取PID、查看进程信息等)、父进程与子进程的关系(重点分析fork函数)、以及进程的三种主要状态(运行、阻塞、挂起)。此外,还探讨了Linux特有的进程状态表示和孤儿进程的处理方式。通过学习这些内容,读者可以更好地理解Linux进程的运行原理并优化系统性能。
310 4
|
8月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。